69 research outputs found
Recommended from our members
Evidence-Based Pediatric Outcome Predictors to Guide the Allocation of Critical Care Resources in a Mass Casualty Event
Objective: ICU resources may be overwhelmed by a mass casualty event, triggering a conversion to Crisis Standards of Care in which critical care support is diverted away from patients least likely to benefit, with the goal of improving population survival. We aimed to devise a Crisis Standards of Care triage allocation scheme specifically for children. Design: A triage scheme is proposed in which patients would be divided into those requiring mechanical ventilation at PICU presentation and those not, and then each group would be evaluated for probability of death and for predicted duration of resource consumption, specifically, duration of PICU length of stay and mechanical ventilation. Children will be excluded from PICU admission if their mortality or resource utilization is predicted to exceed predetermined levels (“high risk”), or if they have a low likelihood of requiring ICU support (“low risk”). Children entered into the Virtual PICU Performance Systems database were employed to develop prediction equations to assign children to the exclusion categories using logistic and linear regression. Machine Learning provided an alternative strategy to develop a triage scheme independent from this process. Setting: One hundred ten American PICUs Subjects: One hundred fifty thousand records from the Virtual PICU database. Interventions: None. Measurements and Main Results: The prediction equations for probability of death had an area under the receiver operating characteristic curve more than 0.87. The prediction equation for belonging to the low-risk category had lower discrimination. R2 for the prediction equations for PICU length of stay and days of mechanical ventilation ranged from 0.10 to 0.18. Machine learning recommended initially dividing children into those mechanically ventilated versus those not and had strong predictive power for mortality, thus independently verifying the triage sequence and broadly verifying the algorithm. Conclusion: An evidence-based predictive tool for children is presented to guide resource allocation during Crisis Standards of Care, potentially improving population outcomes by selecting patients likely to benefit from short-duration ICU interventions. (Pediatr Crit Care Med 2015; XX:00–00) Key Words: intensive care unit length of stay; intensive care unit mortality; mass casualty; palliative care; pandemic preparedness; triag
Hot Gas in Galaxy Groups: Recent Observations
Galaxy groups are the least massive systems where the bulk of baryons begin
to be accounted for. Not simply the scaled-down versions of rich clusters
following self-similar relations, galaxy groups are ideal systems to study
baryon physics, which is important for both cluster cosmology and galaxy
formation. We review the recent observational results on the hot gas in galaxy
groups. The first part of the paper is on the scaling relations, including
X-ray luminosity, entropy, gas fraction, baryon fraction and metal abundance.
Compared to clusters, groups have a lower fraction of hot gas around the center
(e.g., r < r_2500), but may have a comparable gas fraction at large radii
(e.g., r_2500 < r < r_500). Better constraints on the group gas and baryon
fractions require sample studies with different selection functions and deep
observations at r > r_500 regions. The hot gas in groups is also iron poor at
large radii (0.3 r_500 - 0.7 r_500). The iron content of the hot gas within the
central regions (r < 0.3 r_500) correlates with the group mass, in contrast to
the trend of the stellar mass fraction. It remains to be seen where the missing
iron in low-mass groups is. In the second part, we discuss several aspects of
X-ray cool cores in galaxy groups, including their difference from cluster cool
cores, radio AGN heating in groups and the cold gas in group cool cores.
Because of the vulnerability of the group cool cores to radio AGN heating and
the weak heat conduction in groups, group cool cores are important systems to
test the AGN feedback models and the multiphase cool core models. At the end of
the paper, some outstanding questions are listed.Comment: 31 pages, 9 figures, to appear in the focus issue on "Galaxy
Clusters", New Journal of Physics,
http://iopscience.iop.org/1367-2630/focus/Focus%20on%20Galaxy%20Cluster
A global inventory of stratospheric NOy from ACE-FTS
The Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on board the Canadian SCISAT-1 satellite (launched in August 2003) measures over 30 different atmospheric species, including six nitrogen trace gases that are needed to quantify the stratospheric NOy budget. We combine volume mixing ratio (VMR) profiles for NO, NO2, HNO3, N2O5, ClONO2, and HNO4 to determine a zonally averaged NOy climatology on monthly and 3 month combined means (December–February, March–May, June–August, and September–November) at 5° latitude spacing and on 33 pressure surfaces. Peak NOy VMR concentrations (15–20 ppbv) are situated at about 3 hPa (∼40 km) in the tropics, while they are typically lower at about 10 hPa (∼30 km) in the midlatitudes. Mean NOy VMRs are similar in both the northern and southern polar regions, with the exception of large enhancements periodically observed in the upper stratosphere and lower mesosphere. These are primarily due to enhancements of NO due to energetic particle precipitation and downward transport. Other features in the NOy budget are related to descent in the polar vortex, heterogeneous chemistry, and denitrification processes. Comparison of the ACE-FTS NOy budget is made to both the Odin and ATMOS NOy data sets, showing in both cases a good level of agreement, such that relative differences are typically better than 20%. The NOy climatological products are available through the ACE website and are a supplement to the paper.
- A middle-atmosphere NOy climatology has been produced using ACE-FTS measurements;
- A robust method for quality controlling the input data has been developed
- Good agreement is found between ACE-FTS NOy climatology and other climatologie
Search for anomalous t t-bar production in the highly-boosted all-hadronic final state
A search is presented for a massive particle, generically referred to as a
Z', decaying into a t t-bar pair. The search focuses on Z' resonances that are
sufficiently massive to produce highly Lorentz-boosted top quarks, which yield
collimated decay products that are partially or fully merged into single jets.
The analysis uses new methods to analyze jet substructure, providing
suppression of the non-top multijet backgrounds. The analysis is based on a
data sample of proton-proton collisions at a center-of-mass energy of 7 TeV,
corresponding to an integrated luminosity of 5 inverse femtobarns. Upper limits
in the range of 1 pb are set on the product of the production cross section and
branching fraction for a topcolor Z' modeled for several widths, as well as for
a Randall--Sundrum Kaluza--Klein gluon. In addition, the results constrain any
enhancement in t t-bar production beyond expectations of the standard model for
t t-bar invariant masses larger than 1 TeV.Comment: Submitted to the Journal of High Energy Physics; this version
includes a minor typo correction that will be submitted as an erratu
Taxonomy of the order Mononegavirales: update 2016
In 2016, the order Mononegavirales was emended through the addition of two new families (Mymonaviridae and Sunviridae), the elevation of the paramyxoviral subfamily Pneumovirinae to family status (Pneumoviridae), the addition of five free-floating genera (Anphevirus, Arlivirus, Chengtivirus, Crustavirus, and Wastrivirus), and several other changes at the genus and species levels. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV)
Sp1-regulated expression of p11 contributes to motor neuron degeneration by membrane insertion of TASK1
Disruption in membrane excitability contributes to malfunction and differential vulnerability
of specific neuronal subpopulations in a number of neurological diseases. The adaptor protein
p11, and background potassium channel TASK1, have overlapping distributions in the CNS.
Here, we report that the transcription factor Sp1 controls p11 expression, which impacts on
excitability by hampering functional expression of TASK1. In the SOD1-G93A mouse model of
ALS, Sp1-p11-TASK1 dysregulation contributes to increased excitability and vulnerability of
motor neurons. Interference with either Sp1 or p11 is neuroprotective, delaying neuron loss
and prolonging lifespan in this model. Nitrosative stress, a potential factor in human neurodegeneration,
stimulated Sp1 expression and human p11 promoter activity, at least in part,
through a Sp1-binding site. Disruption of Sp1 or p11 also has neuroprotective effects in a
traumatic model of motor neuron degeneration. Together our work suggests the Sp1-p11-
TASK1 pathway is a potential target for treatment of degeneration of motor neurons
- …