1,603 research outputs found
The key role of topography in altering North Atlantic atmospheric circulation during the last glacial period
The Last Glacial Maximum (LGM; 21 000 yr before present) was a period of low atmospheric greenhouse gas concentrations, when vast ice sheets covered large parts of North America and Europe. Paleoclimate reconstructions and modeling studies suggest that the atmospheric circulation was substantially altered compared to today, both in terms of its mean state and its variability. Here we present a suite of coupled model simulations designed to investigate both the separate and combined influences of the main LGM boundary condition changes (greenhouse gases, ice sheet topography and ice sheet albedo) on the mean state and variability of the atmospheric circulation as represented by sea level pressure (SLP) and 200-hPa zonal wind in the North Atlantic sector. We find that ice sheet topography accounts for most of the simulated changes during the LGM. Greenhouse gases and ice sheet albedo affect the SLP gradient in the North Atlantic, but the overall placement of high and low pressure centers is controlled by topography. Additional analysis shows that North Atlantic sea surface temperatures and sea ice edge position do not substantially influence the pattern of the climatological-mean SLP field, SLP variability or the position of the North Atlantic jet in the LGM
Certification Labels for Trustworthy AI: Insights From an Empirical Mixed-Method Study
Auditing plays a pivotal role in the development of trustworthy AI. However,
current research primarily focuses on creating auditable AI documentation,
which is intended for regulators and experts rather than end-users affected by
AI decisions. How to communicate to members of the public that an AI has been
audited and considered trustworthy remains an open challenge. This study
empirically investigated certification labels as a promising solution. Through
interviews (N = 12) and a census-representative survey (N = 302), we
investigated end-users' attitudes toward certification labels and their
effectiveness in communicating trustworthiness in low- and high-stakes AI
scenarios. Based on the survey results, we demonstrate that labels can
significantly increase end-users' trust and willingness to use AI in both low-
and high-stakes scenarios. However, end-users' preferences for certification
labels and their effect on trust and willingness to use AI were more pronounced
in high-stake scenarios. Qualitative content analysis of the interviews
revealed opportunities and limitations of certification labels, as well as
facilitators and inhibitors for the effective use of labels in the context of
AI. For example, while certification labels can mitigate data-related concerns
expressed by end-users (e.g., privacy and data protection), other concerns
(e.g., model performance) are more challenging to address. Our study provides
valuable insights and recommendations for designing and implementing
certification labels as a promising constituent within the trustworthy AI
ecosystem
Recommended from our members
Midlatitude atmospheric circulation responses under 1.5C and 2.0C warming and implications for regional impacts
This study investigates the global response of the midlatitude atmospheric circulation to 1.5◦C and 5 2.0◦C of warming using the HAPPI “Half a degree Additional warming, Prognosis and Projected Im- pacts” ensemble, with a focus on the winter season. Characterizing and understanding this response is critical for accurately assessing the near-term regional impacts of climate change and the benefits of limiting warming to 1.5◦C above pre-industrial levels, as advocated by the Paris Agreement of the United Nations Framework Convention on Climate Change (UNFCCC). The HAPPI experimental 10 design allows an assessment of uncertainty in the circulation response due to model dependence and internal variability. Internal variability is found to dominate the multi-model mean response of the jet streams, storm tracks and stationary waves across most of the midlatitudes; larger signals in these features are mostly consistent with those seen in more strongly forced warming scenarios. Signals that emerge in the 1.5◦C experiment are a weakening of storm activity over North America, an inland 15 shift of the North American stationary ridge, an equatorward shift of the North Pacific jet exit, and an equatorward intensification of the South Pacific jet. Signals that emerge under an additional 0.5◦C of warming include a poleward shift of the North Atlantic jet exit, an eastward extension of the North Atlantic storm track, and an intensification on the flanks of the Southern Hemisphere storm track.
Case studies explore the implications of these circulation responses for precipitation impacts in the 20 Mediterranean, western Europe and on the North American west coast, paying particular attention to possible outcomes at the tails of the response distributions. For example, the projected weakening of the Mediterranean storm track emerges in the 2◦C warmer world, with exceptionally dry decades becoming five times more likely
Bovine Dermal Matrix as Coverage of Facial Nerve Grafts
Introduction. Soft tissue defects over functional structures represent a challenge for the reconstructive surgeon. Often complex, reconstructive procedures are required. Occasionally, elderly or sick patients do not qualify for these extensive procedures. Case. We present the case of a 91-year-old lady with large hemifacial defect with exposed bone and nerves after tumor resection. We first performed radical resection including the fascia of the temporalis muscle and the frontal branch of the facial nerve. Due to the moribund elderly patient with a potentially high perioperative risk, we decided against flap reconstruction but to use bovine collagen/elastin matrix and split thickness skin graft. Results. No postoperative complications occurred and STSG and matrix healed uneventfully. Discussion. In selected cases, where complex reconstruction is not appropriate, this procedure can be a safe, easy, and fast alternative for covering soft tissue defects even on wound grounds containing nerve grafts
Evidence for extensive polymorphism of class I genes in the rat major histocompatibility complex (RT1).
The major histocompatibility complex of the rat (RT1) has been poorly characterized with respect to the number, linkage, and polymorphism of class I genes. To estimate the number of class I RT1 genes and the relative extent of their polymorphism, we performed Southern blot analysis with liver DNA from rat strains expressing eight RT1 haplotypes. After digestion with EcoR1 and BamHI, the DNA was separated on agarose gels, blotted onto nitrocellulose, and hybridized with mouse H-2 cDNA probes, pH-2III and pH-2IIa. Ten to 20 EcoRI and 13 to 20 BamHI bands hybridized with pH-2III and pH-2IIa; restriction fragment length patterns were observed to be highly polymorphic. The restriction fragments associated with different RT1 haplotypes differed by 17-70%; this range is similar to the differences observed between mouse H-2 haplotypes. The same restriction fragment pattern was observed in DNA from three different rat strains sharing the same RT1 allele, confirming that the patterns were RT1-associated. Further, the RT11 and RT11v1 haplotypes, which differ at a single previously identified RT1-linked locus, were associated with EcoRI restriction pattern differences of 39-50%, confirming the supposition that RT1 class I genes identified by previous serological and T-cell-mediated assays have identified only a minority of the actual number of RT1-linked class I genes. In summary, the results reported in this communication demonstrate that the RT1 complex encompasses a large family of highly polymorphic class I genes similar to the H-2 and HL-A complexes of mouse and man
Recommended from our members
Internal Variability in Projections of Twenty-First-Century Arctic Sea Ice Loss: Role of the Large-Scale Atmospheric Circulation
Internal variability in twenty-first-century summer Arctic sea ice loss and its relationship to the large-scale atmospheric circulation is investigated in a 39-member Community Climate System Model, version 3 (CCSM3) ensemble for the period 2000–61. Each member is subject to an identical greenhouse gas emissions scenario and differs only in the atmospheric model component’s initial condition. September Arctic sea ice extent trends during 2020–59 range from -2.0 x 10⁶ to -5.7 x 10⁶ km² across the 39 ensemble members, indicating a substantial role for internal variability in future Arctic sea ice loss projections. A similar nearly threefold range (from -7.0 x 10³ to -19 x 10³ km³) is found for summer sea ice volume trends. Higher rates of summer Arctic sea ice loss in CCSM3 are associated with enhanced transpolar drift and Fram Strait ice export driven by surface wind and sea level pressure patterns. Over the Arctic, the covarying atmospheric circulation patterns resemble the so-called Arctic dipole, with maximum amplitude between April and July. Outside the Arctic, an atmospheric Rossby wave train over the Pacific sector is associated with internal ice loss variability. Interannual covariability patterns between sea ice and atmospheric circulation are similar to those based on trends, suggesting that similar processes govern internal variability over a broad range of time scales. Interannual patterns of CCSM3 ice–atmosphere covariability compare well with those in nature and in the newer CCSM4 version of the model, lending confidence to the results. Atmospheric teleconnection patterns in CCSM3 suggest that the tropical Pacific modulates Arctic sea ice variability via the aforementioned Rossby wave train. Large ensembles with other coupled models are needed to corroborate these CCSM3-based findings.Keywords: Climate models, Atmospheric circulation, Sea ice, Climate variability, Atmosphere-ocean interaction, Climate chang
Anatomy, morphology and evolution of the patella in squamate lizards and tuatara (Sphenodon punctatus)
The patella (kneecap) is the largest and best-known of the sesamoid bones, postulated to confer biomechanical advantages including increasing joint leverage and reinforcing the tendon against compression. It has evolved several times independently in amniotes, but despite apparently widespread occurrence in lizards, the patella remains poorly characterised in this group and is, as yet, completely undescribed in their nearest extant relative Sphenodon (Rhynchocephalia). Through radiography, osteological and fossil studies we examined patellar presence in diverse lizard and lepidosauromorph taxa, and using computed tomography, dissection and histology we investigated in greater depth the anatomy and morphology of the patella in 16 lizard species and 19 Sphenodon specimens. We have found the first unambiguous evidence of a mineralised patella in Sphenodon, which appears similar to the patella of lizards and shares several gross and microscopic anatomical features. Although there may be a common mature morphology, the squamate patella exhibits a great deal of variability in development (whether from a cartilage anlage or not, and in the number of mineralised centres) and composition (bone, mineralised cartilage or fibrotendinous tissue). Unlike in mammals and birds, the patella in certain lizards and Sphenodon appears to be a polymorphic trait. We have also explored the evolution of the patella through ancestral state reconstruction, finding that the patella is ancestral for lizards and possibly Lepidosauria as a whole. Clear evidence of the patella in rhynchocephalian or stem lepidosaurian fossil taxa would clarify the evolutionary origin(s) of the patella, but due to the small size of this bone and the opportunity for degradation or loss we could not definitively conclude presence or absence in the fossils examined. The pattern of evolution in lepidosaurs is unclear but our data suggest that the emergence of this sesamoid may be related to the evolution of secondary ossification centres and/or changes in knee joint conformation, where enhancement of extensor muscle leverage would be more beneficial.Sophie Regnault, Marc E. H. Jones, Andrew A. Pitsillides, John R. Hutchinso
Induction of Mutants with Ectopic Expression of Condensed Tannins
Leaves of 47,000 Lotus japonicus plants were screened using a butanol:HCl histochemical test to select “gain of function” mutants. These plants were progeny from L. japonicus lines which were transformed with T-DNA constructs containing either the maize Ds or Ac transposon (Thykjaer et al., 1995). Among 21 putative leaf tannin mutants, five (tan1-5) were characterized for synthesis of condensed tannins, leucocyanidin reductase activity and the presence of Ac and the selectable marker gene, nptII . A range of leaf tannin content among other Lotus species was also characterized
From invasion percolation to flow in rock fracture networks
The main purpose of this work is to simulate two-phase flow in the form of
immiscible displacement through anisotropic, three-dimensional (3D) discrete
fracture networks (DFN). The considered DFNs are artificially generated, based
on a general distribution function or are conditioned on measured data from
deep geological investigations. We introduce several modifications to the
invasion percolation (MIP) to incorporate fracture inclinations, intersection
lines, as well as the hydraulic path length inside the fractures. Additionally
a trapping algorithm is implemented that forbids any advance of the invading
fluid into a region, where the defending fluid is completely encircled by the
invader and has no escape route. We study invasion, saturation, and flow
through artificial fracture networks, with varying anisotropy and size and
finally compare our findings to well studied, conditioned fracture networks.Comment: 18 pages, 10 figure
- …