41 research outputs found
Differential expression of protein kinase C isoforms in coronary arteries of diabetic mice lacking the G-protein Gα11
<p>Abstract</p> <p>Background</p> <p>Diabetes mellitus counts as a major risk factor for developing atherosclerosis. The activation of protein kinase C (PKC) is commonly known to take a pivotal part in the pathogenesis of atherosclerosis, though the influence of specific PKC isozymes remains unclear. There is evidence from large clinical trials suggesting excessive neurohumoral stimulation, amongst other pathways leading to PKC activation, as a central mechanism in the pathogenesis of diabetic heart disease. The present study was therefore designed to determine the role of G<sub>q</sub>-protein signalling via Gα<sub>11 </sub>in diabetes for the expression of PKC isozymes in the coronary vessels.</p> <p>Methods</p> <p>The role of Gα<sub>11 </sub>in diabetes was examined in knockout mice with global deletion of Gα<sub>11 </sub>compared to wildtype controls. An experimental type 1-diabetes was induced in both groups by injection of streptozotocin. Expression and localization of the PKC isozymes α, βII, δ, ε, and ζ was examined by quantitative immunohistochemistry.</p> <p>Results</p> <p>8 weeks after induction of diabetes a diminished expression of PKC <b>ε </b>was observed in wildtype animals. This alteration was not seen in Gα<sub>11 </sub>knockout animals, however, these mice showed a diminished expression of PKCζ. Direct comparison of wildtype and knockout control animals revealed a diminished expression of PKC δ and ε in Gα<sub>11 </sub>knockout animals.</p> <p>Conclusion</p> <p>The present study shows that expression of the nPKCs δ and <b>ε </b>in coronary vessels is under control of the g-protein Gα<sub>11</sub>. The reduced expression of PKC ζ that we observed in coronary arteries from Gα<sub>11</sub>-knockout mice compared to wildtype controls upon induction of diabetes could reduce apoptosis and promote plaque stability. These findings suggest a mechanism that may in part underlie the therapeutic benefit of RAS inhibition on cardiovascular endpoints in diabetic patients.</p
G_13 is an essential mediator of platelet activation in hemostasis and thrombosis
Platelet activation at sites of vascular injury is essential for primary hemostasis, but also underlies arterial thrombosis leading to myocardial infarction or stroke. Platelet activators such as adenosine diphosphate, thrombin or thromboxane A_2 (TXA_2) activate receptors that are coupled to heterotrimeric G proteins. Activation of platelets through these receptors involves signaling through G_q, G_i and G_z (refs. 4, 5, 6). However, the role and relative importance of G12 and G13, which are activated by various platelet stimuli, are unclear. Here we show that lack of Galpha_13, but not Galpha_12, severely reduced the potency of thrombin, TXA2 and collagen to induce platelet shape changes and aggregation in vitro. These defects were accompanied by reduced activation of RhoA and inability to form stable platelet thrombi under high shear stress ex vivo. Galpha_13 deficiency in platelets resulted in a severe defect in primary hemostasis and complete protection against arterial thrombosis in vivo. We conclude that G_13-mediated signaling processes are required for normal hemostasis and thrombosis and may serve as a new target for antiplatelet drugs
Thyrocyte-specific G q /G 11 deficiency impairs thyroid function and prevents goiter development
The function of the adult thyroid is regulated by thyroid-stimulating hormone (TSH), which acts through a G protein-coupled receptor. Overactivation of the TSH receptor results in hyperthyroidism and goiter. The G s -mediated stimulation of adenylyl cyclase-dependent cAMP formation has been regarded as the principal intracellular signaling mechanism mediating the action of TSH. Here we show that the G q /G 11 -mediated signaling pathway plays an unexpected and essential role in the regulation of thyroid function. Mice lacking the α subunits of G q and G 11 specifically in thyroid epithelial cells showed severely reduced iodine organification and thyroid hormone secretion in response to TSH, and many developed hypothyroidism within months after birth. In addition, thyrocyte-specific Gα q /Gα 11 -deficient mice lacked the normal proliferative thyroid response to TSH or goitrogenic diet, indicating an essential role of this pathway in the adaptive growth of the thyroid gland. Our data suggest that G q /G 11 and their downstream effectors are promising targets to interfere with increased thyroid function and growth
Anaphylactic shock depends on endothelial Gq/G11
Anaphylactic shock is a severe allergic reaction involving multiple organs including the bronchial and cardiovascular system. Most anaphylactic mediators, like platelet-activating factor (PAF), histamine, and others, act through G protein–coupled receptors, which are linked to the heterotrimeric G proteins Gq/G11, G12/G13, and Gi. The role of downstream signaling pathways activated by anaphylactic mediators in defined organs during anaphylactic reactions is largely unknown. Using genetic mouse models that allow for the conditional abrogation of Gq/G11- and G12/G13-mediated signaling pathways by inducible Cre/loxP-mediated mutagenesis in endothelial cells (ECs), we show that Gq/G11-mediated signaling in ECs is required for the opening of the endothelial barrier and the stimulation of nitric oxide formation by various inflammatory mediators as well as by local anaphylaxis. The systemic effects of anaphylactic mediators like histamine and PAF, but not of bacterial lipopolysaccharide (LPS), are blunted in mice with endothelial Gαq/Gα11 deficiency. Mice with endothelium-specific Gαq/Gα11 deficiency, but not with Gα12/Gα13 deficiency, are protected against the fatal consequences of passive and active systemic anaphylaxis. This identifies endothelial Gq/G11-mediated signaling as a critical mediator of fatal systemic anaphylaxis and, hence, as a potential new target to prevent or treat anaphylactic reactions
Members of Bitter Taste Receptor Cluster Tas2r143/Tas2r135/Tas2r126 Are Expressed in the Epithelium of Murine Airways and Other Non-gustatory Tissues
The mouse bitter taste receptors Tas2r143, Tas2r135, and Tas2r126 are encoded by genes that cluster on chromosome 6 and have been suggested to be expressed under common regulatory elements. Previous studies indicated that the Tas2r143/Tas2r135/Tas2r126 cluster is expressed in the heart, but other organs had not been systematically analyzed. In order to investigate the expression of this bitter taste receptor gene cluster in non-gustatory tissues, we generated a BAC (bacterial artificial chromosome) based transgenic mouse line, expressing CreERT2 under the control of the Tas2r143 promoter. After crossing this line with a mouse line expressing EGFP after Cre-mediated recombination, we were able to validate the Tas2r143-CreERT2 transgenic mouse line and monitor the expression of Tas2r143. EGFP-positive cells, indicating expression of members of the cluster, were found in about 47% of taste buds, and could also be found in several other organs. A population of EGFP-positive cells was identified in thymic epithelial cells, in the lamina propria of the intestine and in vascular smooth muscle cells of cardiac blood vessels. EGFP-positive cells were also identified in the epithelium of organs readily exposed to pathogens including lower airways, the gastrointestinal tract, urethra, vagina, and cervix. With respect to the function of cells expressing this bitter taste receptor cluster, RNA-seq analysis in EGFP-positive cells isolated from the epithelium of trachea and stomach showed expression of genes related to innate immunity. These data further support the concept that bitter taste receptors serve functions outside the gustatory system
Members of Bitter Taste Receptor Cluster Tas2r143/Tas2r135/Tas2r126 Are Expressed in the Epithelium of Murine Airways and Other Non-gustatory Tissues
The mouse bitter taste receptors Tas2r143, Tas2r135, and Tas2r126 are encoded by genes that cluster on chromosome 6 and have been suggested to be expressed under common regulatory elements. Previous studies indicated that the Tas2r143/Tas2r135/Tas2r126 cluster is expressed in the heart, but other organs had not been systematically analyzed. In order to investigate the expression of this bitter taste receptor gene cluster in non-gustatory tissues, we generated a BAC (bacterial artificial chromosome) based transgenic mouse line, expressing CreERT2 under the control of the Tas2r143 promoter. After crossing this line with a mouse line expressing EGFP after Cre-mediated recombination, we were able to validate the Tas2r143-CreERT2 transgenic mouse line and monitor the expression of Tas2r143. EGFP-positive cells, indicating expression of members of the cluster, were found in about 47% of taste buds, and could also be found in several other organs. A population of EGFP-positive cells was identified in thymic epithelial cells, in the lamina propria of the intestine and in vascular smooth muscle cells of cardiac blood vessels. EGFP-positive cells were also identified in the epithelium of organs readily exposed to pathogens including lower airways, the gastrointestinal tract, urethra, vagina, and cervix. With respect to the function of cells expressing this bitter taste receptor cluster, RNA-seq analysis in EGFP-positive cells isolated from the epithelium of trachea and stomach showed expression of genes related to innate immunity. These data further support the concept that bitter taste receptors serve functions outside the gustatory system
Gα12/Gα13 Deficiency Causes Localized Overmigration of Neurons in the Developing Cerebral and Cerebellar Cortices▿
The heterotrimeric G proteins G12 and G13 link G-protein-coupled receptors to the regulation of the actin cytoskeleton and the induction of actomyosin-based cellular contractility. Here we show that conditional ablation of the genes encoding the α-subunits of G12 and G13 in the nervous system results in neuronal ectopia of the cerebral and cerebellar cortices due to overmigration of cortical plate neurons and cerebellar Purkinje cells, respectively. The organization of the radial glia and the basal lamina was not disturbed, and the Cajal-Retzius cell layer had formed normally in mutant mice. Embryonic cortical neurons lacking G12/G13 were unable to retract their neurites in response to lysophosphatidic acid and sphingosine-1-phosphate, indicating that they had lost the ability to respond to repulsive mediators acting via G-protein-coupled receptors. Our data indicate that G12/G13-coupled receptors mediate stop signals and are required for the proper positioning of migrating cortical plate neurons and Purkinje cells during development