973 research outputs found

    Non-Equilibrium Time Evolution in Quantum Field Theory

    Full text link
    The time development of equal-time correlation functions in quantum mechanics and quantum field theory is described by an exact evolution equation for generating functionals. This permits a comparison between classical and quantum evolution in non-equilibrium systems.Comment: 7 pages, LaTe

    Coupled dark energy and dark matter from dilatation anomaly

    Full text link
    Cosmological runaway solutions may exhibit an exact dilatation symmetry in the asymptotic limit of infinite time. In this limit, the massless dilaton or cosmon could be accompanied by another massless scalar field - the geon. At finite time, small time-dependent masses for both the cosmon and geon are still present due to imperfect dilatation symmetry. For a sufficiently large mass the geon will start oscillating and play the role of dark matter, while the cosmon is responsible for dark energy. The common origin of the mass of both fields leads to an effective interaction between dark matter and dark energy. Realistic cosmologies are possible for a simple form of the effective cosmon-geon-potential. We find an inverse geon mass of a size where it could reduce subgalactic structure formation.Comment: 4 pages, 2 figure

    Mass freezing in growing neutrino quintessence

    Full text link
    Growing neutrino quintessence solves the coincidence problem for dark energy by a growing cosmological value of the neutrino mass which emerges from a cosmon-neutrino interaction stronger than gravity. The cosmon-mediated attraction between neutrinos induces the formation of large scale neutrino lumps in a recent cosmological epoch. We argue that the non-linearities in the cosmon field equations stop the further increase of the neutrino mass within sufficiently dense and large lumps. As a result, we find the neutrino induced gravitational potential to be substantially reduced when compared to linear extrapolations. We furthermore demonstrate that inside a lump the possible time variation of fundamental constants is much smaller than their cosmological evolution. This feature may reconcile current geophysical bounds with claimed cosmological variations of the fine structure constant.Comment: 15 pages, 12 figures. Version published in PR

    Quantum fermions and quantum field theory from classical statistics

    Full text link
    An Ising-type classical statistical ensemble can describe the quantum physics of fermions if one chooses a particular law for the time evolution of the probability distribution. It accounts for the time evolution of a quantum field theory for Dirac particles in an external electromagnetic field. This yields in the non-relativistic one-particle limit the Schr\"odinger equation for a quantum particle in a potential. Interference or tunneling arise from classical probabilities.Comment: 15 pages, proceedings Emergent Quantum Mechanics, Heinz von Foerster conference, Vienn

    Critical Phenomena in Continuous Dimension

    Full text link
    We present a calculation of critical phenomena directly in continuous dimension d employing an exact renormalization group equation for the effective average action. For an Ising-type scalar field theory we calculate the critical exponents nu(d) and eta(d) both from a lowest--order and a complete first--order derivative expansion of the effective average action. In particular, this can be used to study critical behavior as a function of dimensionality at fixed temperature.Comment: 5 pages, 1 figure, PLB version, references adde

    Coarse graining and first order phase transitions

    Get PDF
    We discuss the dependence of the coarse grained free energy and the classical interface tension on the coarse graining scale kk. A stable range appears only if the renormalized dimensionless couplings at the critical temperature are small. This gives a quantitative criterion for the validity of computations within Langer's theory of spontaneous bubble nucleation.Comment: 14 pages, 5 figure

    Spontaneous symmetry breaking in the colored Hubbard model

    Full text link
    The Hubbard model is reformulated in terms of different ``colored'' fermion species for the electrons or holes at different lattice sites. Antiferromagnetic ordering or d-wave superconductivity can then be described in terms of translationally invariant expectation values for colored composite scalar fields. A suitable mean field approximation for the two dimensional colored Hubbard model shows indeed phases with antiferromagnetic ordering or d-wave superconductivity at low temperature. At low enough temperature the transition to the antiferromagnetic phase is of first order. The present formulation also allows an easy extension to more complicated microscopic interactions.Comment: 19 pages, 5 figure

    Renormalization Flow of Bound States

    Get PDF
    A renormalization group flow equation with a scale-dependent transformation of field variables gives a unified description of fundamental and composite degrees of freedom. In the context of the effective average action, we study the renormalization flow of scalar bound states which are formed out of fundamental fermions. We use the gauged Nambu--Jona-Lasinio model at weak gauge coupling as an example. Thereby, the notions of bound state or fundamental particle become scale dependent, being classified by the fixed-point structure of the flow of effective couplings.Comment: 25 pages, 3 figures, v2: minor corrections, version to appear in PR
    • …
    corecore