28 research outputs found

    Reaction of chromium(VI) with glutathione or with hydrogen peroxide: identification of reactive intermediates and their role in chromium(VI)-induced DNA damage.

    Get PDF
    The types of reactive intermediates generated upon reduction of chromium(VI) by glutathione or hydrogen peroxide and the resulting DNA damage have been determined. In vitro, reaction of chromium(VI) with glutathione led to formation of two chromium(V) complexes and the glutathione thiyl radical. When chromium(VI) was reacted with DNA in the presence of glutathione, chromium-DNA adducts were obtained, with no DNA strand breakage. The level of chromium-DNA adduct formation correlated with chromium(V) formation. Reaction of chromium(VI) with hydrogen peroxide led to formation of hydroxyl radical. No chromium(V) was detectable at 24 degrees C (297 K); however, low levels of the tetraperoxochromium(V) complex were detected at 77 K. Reaction of chromium(VI) with DNA in the presence of hydrogen peroxide produced significant DNA strand breakage and the 8-hydroxydeoxyguanosine adduct, whose formation correlated with hydroxyl radical production. No significant chromium-DNA adduct formation was detected. Thus, the nature of chromium(VI)-induced DNA damage appears to be dependent on the reactive intermediates, i.e. chromium(V) or hydroxyl radical, produced during the reduction of chromium(VI)

    Developing core sets for persons following amputation based on the International Classification of Functioning, Disability and Health as a way to specify functioning

    Get PDF
    Amputation is a common late stage sequel of peripheral vascular disease and diabetes or a sequel of accidental trauma, civil unrest and landmines. The functional impairments affect many facets of life including but not limited to: Mobility; activities of daily living; body image and sexuality. Classification, measurement and comparison of the consequences of amputations has been impeded by the limited availability of internationally, multiculturally standardized instruments in the amputee setting. The introduction of the International Classification of Functioning, Disability and Health (ICF) by the World Health Assembly in May 2001 provides a globally accepted framework and classification system to describe, assess and compare function and disability. In order to facilitate the use of the ICF in everyday clinical practice and research, ICF core sets have been developed that focus on specific aspects of function typically associated with a particular disability. The objective of this paper is to outline the development process for the ICF core sets for persons following amputation. The ICF core sets are designed to translate the benefits of the ICF into clinical routine. The ICF core sets will be defined at a Consensus conference which will integrate evidence from preparatory studies, namely: (a) a systematic literature review regarding the outcome measures of clinical trails and observational studies, (b) semi-structured patient interviews, (c) international experts participating in an internet-based survey, and (d) cross-sectional, multi-center studies for clinical applicability. To validate the ICF core sets field-testing will follow. Invitation for participation: The development of ICF Core Sets is an inclusive and open process. Anyone who wishes to actively participate in this process is invited to do so

    Molecular Mimicry in Mercury Toxicology

    No full text
    Molecular mimicry occurs when one molecular entity is "mistaken" for another by cellular or other biological processes, and is thought to arise from structural similarities between the two molecules in question. It has been postulated by others to be important in the mechanism of uptake of toxic metal species into living tissues. A widely accepted example is the transport of methylmercury-cysteine species, which are thought to mimic the amino acid methionine. We have used mass spectrometry and mercury L(III)-edge X-ray absorption spectroscopy to understand the solution structure of complexes between methylmercury and cysteine. With a view to understanding the basis of the suggested molecular mimicry mechanisms, we have used computational chemistry to compare the structure of methionine with that of the dominant solution species L-cysteinato(methyl)mercury(II), and the structure of cystine with that of mercury(II) bis-L-cysteineate. We conclude that the structural similarities between metal compounds and natural products are insufficient to support a mechanism based on molecular mimicry, but instead, mechanisms involving a less-specific mimicry based on similarity with the L(alpha) region of the amino acid part of the molecule.Ruth E. Hoffmeyer, Satya P. Singh, Christian J. Doonan, Andrew R. S. Ross, Richard J. Hughes, Ingrid J. Pickering, and Graham N. Georg
    corecore