33 research outputs found
Escape of surgical smoke particles, comparing conventional and valveless trocar systems
Background: During minimal access surgery, surgical smoke is produced which can potentially be inhaled by the surgical team, leading to several health risks. This smoke can escape from the abdominal cavity into the operating room due to trocar leakage. The trocars and insufflator that are used during surgery influence gas leakage. Therefore, this study compares particle escape from a valveless (Conmed AirSeal iFS), and a conventional (Karl Storz Endoflator) system. Materials and methods:Using an in vitro model, a conventional and a valveless trocar system were compared. A protocol that simulated various surgical phases was defined to assess the surgical conditions and particle leakage. Insufflation pressures and instrument diameters were varied as these are known to affect gas leakage. Results: The conventional trocar leaked during two distinct phases. Removal of the obturator caused a sudden release of particles. During instrument insertion, an average of 211 (IQR 111) particles per second escaped when using the 5 mm diameter instrument. With the 10 mm instrument, 50 (IQR 13) particles per second were measured. With the conventional trocar, a higher abdominal pressure increased particle leakage. The valveless trocar demonstrated a continuously high particle release during all phases. After the obturator was removed, particle escape increased sharply. Particle escape decreased to 1276 (IQR 580) particles per second for the 5 mm instrument insertion, and 1084 (IQR 630) particles per second for 10 mm instrument insertion. With the valveless trocar system, a higher insufflation pressure lowered particle escape. Conclusions: This study shows that a valveless trocar system releases more particles into the operating room environment than a conventional trocar. During instrument insertion, the leakage through the valveless system is 6 to 20 times higher than the conventional system. With a valveless trocar, leakage decreases with increasing pressure. With both trocar types leakage depends on instrument diameter.</p
Dynamic Light Scattering: A New Noninvasive Technology for Neonatal Heart Rate Monitoring
Background: Heart rate (HR) detection in premature infants using electrocardiography (ECG) is challenging due to a low signal amplitude and the fragility of the premature skin. Recently, the dynamic light scattering (DLS) technique has been miniaturized, allowing noninvasive HR measurements with a single sensor. Objective: The aim was to determine the accuracy of DLS for HR measurement in infants, compared to ECG-derived HR. Methods: Stable infants with a gestational age of ≥26 weeks, monitored with ECG, were eligible for inclusion. HR was measured with the DLS sensor at 5 different sites for 15 min each. We recorded every 10th second of the DLS-derived HR and the DLS signal-to-noise ratio (SNR), and the ECG-derived HR was extracted for analysis. Patients were randomly divided into 2 groups. In the first group, the optimal SNR cut-off value was determined and then applied to the second group to assess agreement. Results: HR measurements from 31 infants were analyzed. ECG-DLS paired data points were collected at the forehead, an upper extremity, the thorax, a lower extremity, and the abdomen. When applying the international accuracy standard for HR detection, DLS accuracy in the first group (n = 15) was optimal at the forehead (SNR cut-off 1.66). Application of this cut-off to the second group (n = 16) showed good agreement between DLS-derived HR and ECG-derived HR (bias –0.73 bpm; 95% limits of agreement –15.46 and 14.00 bpm) at the forehead with approximately 80% (i.e., 1,066/1,310) of all data pairs remaining. Conclusion: The investigated DLS sensor was sensitive to movement, overall providing less accurate HR measurements than ECG and pulse oximetry. In this study population, specific measurement sites provided excellent signal quality and good agreement with ECG-derived HR
Evaluation of a new suture material (Durameshâ„¢) by measuring suture tension in small and large bites techniques for laparotomy closure in a porcine model
_Purpose:_ After closure of laparotomies, sutures may pull through tissue due to too high intra-abdominal pressure or suture tension, resulting in burst abdomen and incisional hernia. The objective of this study was to measure the suture tension in small and large bites with a new suture material.
_Methods:_ Closure of the linea alba was performed with small bites (i.e., 5 mm between two consecutive stitches and 5 mm distance from the incision) and large bites (i.e., 10 mm × 10 mm) with Duramesh™ size 0 (2 mm) and PDS II 2-0 in 24 experiments on six porcine abdominal walls. The abdominal wall was fixated on an artificial computer-controlled insufflatable abdomen, k
Use of Continuous Physiological Monitor Data to Evaluate Doxapram Therapy in Preterm Infants
Introduction: Evaluation of pharmacotherapy during intensive care treatment is commonly based on subjective, intermittent interpretations of physiological parameters. Realtime visualization and analysis may improve drug effect
evaluation. We aimed to evaluate the effects of the respiratory stimulant doxapram objectively in preterm infants using continuous physiological parameters. Methods: In this
longitudinal observational study, preterm infants who receiv
Dynamics of the QTc interval over a 24-h dose interval after start of intravenous ciprofloxacin or low-dose erythromycin administration in ICU patients
QTc interval prolongation is an adverse effect associated with the use of fluoroquinolones and macrolides. Ciprofloxacin and erythromycin are both frequently prescribed QTc-prolonging drugs in critically ill patients. Critically ill patients may be more vulnerable to developing QTc prolongation, as several risk factors can be present at the same time. Therefore, it is important to know the QTc-prolonging potential of these drugs in the intensive care unit (ICU) population. The aim of this study was to assess the dynamics of the QTc interval over a 24-hour dose interval during intravenous ciprofloxacin and low-dose erythromycin treatment. Therefore, an observational study was performed in ICU patients (>= 18 years) receiving ciprofloxacin 400 mg t.i.d. or erythromycin 100 mg b.i.d. intravenously. Continuous ECG data were collected from 2 h before to 24 h after the first administration. QT-analyses were performed using high-end holter software. The effect was determined with a two-sample t-test for clustered data on all QTc values. A linear mixed model by maximum likelihood was applied, for which QTc values were assessed for the available time intervals and therapy. No evident effect over time on therapy with ciprofloxacin and erythromycin was observed on QTc time. There was no significant difference (p = 0.22) in QTc values between the ciprofloxacin group (mean 393 ms) and ciprofloxacin control group (mean 386 ms). The erythromycin group (mean 405 ms) and erythromycin control group (mean 404 ms) neither showed a significant difference (p = 0.80). In 0.6% of the registrations (1.138 out of 198.270 samples) the duration of the QTc interval was longer than 500 ms. The index groups showed slightly more recorded QTc intervals over 500 ms. To conclude, this study could not identify differences in the QTc interval between the treatments analyzed.Clinical Pharmacy and Toxicolog
Dynamic Light Scattering: A New Noninvasive Technology for Neonatal Heart Rate Monitoring
Background: Heart rate (HR) detection in premature infants using electrocardiography (ECG) is challenging due to a low signal amplitude and the fragility of the premature skin. Recently, the dynamic light scattering (DLS) technique has been miniaturized, allowing noninvasive HR measurements with a single sensor. Objective: The aim was to determine the accuracy of DLS for HR measurement in infants, compared to ECG-derived HR. Methods: Stable infants with a gestational age of ≥26 weeks, monitored with ECG, were eligible for inclusion. HR was measured with the DLS sensor at 5 different sites for 15 min each. We recorded every 10th second of the DLS-derived HR and the DLS signal-to-noise ratio (SNR), and the ECG-derived HR was extracted for analysis. Patients were randomly divided into 2 groups. In the first group, the optimal SNR cut-off value was determined and then applied to the second group to assess agreement. Results: HR measurements from 31 infants were analyzed. ECG-DLS paired data points were collected at the forehead, an upper extremity, the thorax, a lower extremity, and the abdomen. When applying the international accuracy standard for HR detection, DLS accuracy in the first group (n = 15) was optimal at the forehead (SNR cut-off 1.66). Application of this cut-off to the second group (n = 16) showed good agreement between DLS-derived HR and ECG-derived HR (bias -0.73 bpm; 95% limits of agreement -15.46 and 14.00 bpm) at the forehead with approximately 80% (i.e., 1,066/1,310) of all data pairs remaining. Conclusion: The investigated DLS sensor was sensitive to movement, overall providing less accurate HR measurements than ECG and pulse oximetry. In this study population, specific measurement sites provided excellent signal quality and good agreement with ECG-derived HR
Novel transcutaneous sensor combining optical tcPO2 and electrochemical tcPCO2 monitoring with reflectance pulse oximetry
This study investigated the accuracy, drift, and clinical usefulness of a new optical transcutaneous oxygen tension (tcPO2) measuring technique, combined with a conventional electrochemical transcutaneous carbon dioxide (tcPCO2) measurement and reflectance pulse oximetry in the novel transcutaneous OxiVenT™ Sensor. In vitro gas studies were performed to measure accuracy and drift of tcPO2 and tcPCO2. Clinical usefulness for tcPO2 and tcPCO2 monitoring was assessed in neonates. In healthy adult volunteers, measured oxygen saturation values (SpO2) were compared with arterially sampled oxygen saturation values (SaO2) during controlled hypoxemia. In vitro correlation and agreement with gas mixtures of tcPO2 (r = 0.999, bias 3.0 mm Hg, limits of agreement − 6.6 to 4.9 mm Hg) and tcPCO2 (r = 0.999, bias 0.8 mm Hg, limits of agreement − 0.7 to 2.2 mm Hg) were excellent. In vitro drift was negligible for tcPO2 (0.30 (0.63 SD) mm Hg/24 h) and highly acceptable for tcPCO2 (− 2.53 (1.04 SD) mm Hg/12 h). Clinical use in neonates showed good usability and feasibility. SpO2-SaO2 correlation (r = 0.979) and agreement (bias 0.13%, limits of agreement − 3.95 to 4.21%) in healthy adult volunteers were excellent. The investigated combined tcPO2, tcPCO2, and SpO2 sensor with a new oxygen fluorescence quenching technique is clinically usable and provides good overall accuracy and negligible tcPO2 drift. Accurate and low-drift tcPO2 monitoring offers improved measurement validity for long-term monitoring of blood and tissue oxygenation. [Figure not available: see fulltext.]
Validation of a new combined transcutaneous tcPCO(2) and tcPO(2) sensor in children in the operating theater
Background: Arterial blood gas analysis is the gold standard for monitoring of P aCO 2 and PaO 2 during mechanical ventilation. However, continuous measurements would be preferred. Transcutaneous sensors continuously measure blood gases diffusing from the locally heated skin. These sensors have been validated in children mostly in intensive care settings. Accuracy in children during general anesthesia is largely unknown. Aims: We conducted a study in children undergoing general anesthesia to validate the use and to determine the accuracy of continuous transcutaneous measurements of the partial pressures of PCO 2 (tcPCO 2) and PO 2 (tcPO 2). Methods: A prospective observational study in a tertiary care pediatric hospital in The Netherlands, from April to October 2018, in children aged 0–18 years undergoing general anesthesia. Patients were included when endotracheally intubated and provided with an arterial catheter for regular blood sampling. Patients with a gestational age <31 weeks, burn victims, and patients with skin disease were excluded. TcPCO 2 and tcPO 2 measurements were performed with a SenTec OxiVenT ™ sensor (SenTec AG). Accuracy was determined with an agreement analysis between arterial and transcutaneous PCO 2 and PO 2 values, and between arterial and endtidal PCO 2 (etCO 2) values, according to Bland and Altman, accounting for multiple measurements per subject. Results: We included 53 patients (median age 4.1 years, IQR 0.7–14.4 years) and retrieved 175 samples. TcPCO 2-P aCO 2 agreement analysis provided a bias of 0.06 kPa (limits of agreement (LOA) −1.18 to 1.31), the etCO 2-P aCO 2 agreement showed a bias of −0.31 kPa (LOA −1.38 to 0.76). Results of the tcPO 2-PaO 2 agreement showed a bias of 3.40 to 0.86* (mean tension) kPa. Conclusions: This study showed good agreement between P aCO 2 and tcPCO 2 in children of all ages during general anesthesia. Both transcutaneous and endtidal CO 2 measurements showed good accuracy. TcPO 2 is only accurate under 6 months of age
Mitochondrial oxygen monitoring with COMET
Mitochondria are the primary consumers of oxygen and therefore an important location for oxygen availability and consumption measurement. A technique has been developed for mitochondrial oxygen tension (mitoPO2) measurement, incorporated in the COMET. In contrast to most textbooks, relatively high average mitoPO2 values have been reported. The first aim of this study was to verify the validity of the COMET calibration for mitoPO2 measurements in human skin. The second aim was to compare the dynamics of mitoPO2 to several other techniques assessing tissue oxygenation. Firstly, we performed a two-point calibration. Mitochondrial oxygen depletion was achieved with vascular occlusion. A high mitoPO2 was reached by local application of cyanide. MitoPO2 was compared to the arterial oxygen partial pressure