21 research outputs found

    Nanoparticle image velocimetry at topologically structured surfaces

    Get PDF
    Nanoparticle image velocimetry ͑nano-PIV͒, based on total internal reflection fluorescent microscopy, is very useful to investigate fluid flows within ϳ100 nm from a surface; but so far it has only been applied to flow over smooth surfaces. Here we show that it can also be applied to flow over a topologically structured surface, provided that the surface structures can be carefully configured not to disrupt the evanescent-wave illumination. We apply nano-PIV to quantify the flow velocity distribution over a polydimethylsiloxane surface, with a periodic gratinglike structure ͑with 215 nm height and 2 m period͒ fabricated using our customized multilevel lithography method. The measured tracer displacement data are in good agreement with the computed theoretical values. These results demonstrate new possibilities to study the interactions between fluid flow and topologically structured surfaces

    Turbulence: introduction to theory and applications of turbulent flows

    No full text
    This book provides a general introduction to the topic of turbulent flows. Apart from classical topics in turbulence, attention is also paid to modern topics. After studying this work, the reader will have the basic knowledge to follow current topics on turbulence in scientific literature. The theory is illustrated with a number of examples of applications, such as closure models, numerical simulations and turbulent diffusion, and experimental findings. The work also contains a number of illustrative exercises

    Hele-Shaw rheometry

    No full text
    In this paper, we describe a novel approach to determine the flow behavior index of a power-law fluid by means of a microfluidic device. The concept of this method is based on a mathematical analysis by Aronsson and Janfalk [Eur. J. Appl. Math. 3, 343–366 (1992)] of Hele-Shaw flow of power-law liquids. We implement this approach by driving a non-Newtonian fluid through a glass microfluidic chip with a 100:1 contraction. The flow in this chip satisfies the Hele-Shaw flow conditions in most of the device. Two conjugate p-Laplace equations describe the pressure and stream function in such flows. These equations depend on the flow behavior index, n. Therefore, by fitting the p-Laplace equation to the velocity field obtained from a micro particle image velocimetry measurement of the flow, the flow behavior index of the fluid in the chip can be determined. Because in practice, fluids rarely show perfectly inelastic power-law behavior, conditions under which the assumption of inelastic flow is valid were derived by analyzing Hele-Shaw flow of an Oldroyd-B fluid. The concept was tested using three different classes of model fluids, a Newtonian fluid, an inelastic power-law fluid, and a Boger fluid. In all three cases, satisfactory results were obtained, with values of n deviating at most 4% from values measured using conventional rheometry. The method presented here is expected to be potentially useful in online quality control in, for example, polymer or food processing.Process and EnergyMechanical, Maritime and Materials Engineerin

    Optimization of multiplane ?PIV for wall shear stress and wall topography characterization

    Get PDF
    Multiplane ?PIV can be utilized to determine the wall shear stress and wall topology from the measured flow over a structured surface. A theoretical model was developed to predict the measurement error for the surface topography and shear stress, based on a theoretical analysis of the precision in PIV measurements. The main parameters that affect the accuracy of the measurement are identified. The effect of different parameter settings is studied by means of Monte Carlo simulations, and the results are compared with an experimental test case. The results are used to determine the recommended parameter settings for this measurement approach.Process and EnergyAerospace Engineerin
    corecore