659 research outputs found

    Analysis of rotational coupling in collisions of Li+ with Ne leading to double excitation of Ne \ud

    Get PDF
    Electron angular distributions due to autoionization of Ne, doubly excited to the (2p43s2)1D state in collisions with Li+ in the energy range 1.2-2.2 keV, are measured in coincidence with Li+ scattered into a well defined direction ( Phi =0 degrees , Theta cm=10.8 degrees ). The experimental findings are analysed with the help of a collision model proposed earlier. In this model the initial excitation occurs by radial diabatic coupling to a molecular Sigma -state at small distances, followed by rotational coupling to Pi - and Delta -states at intermediate distances in the second half of the collision. The energy splitting between the Sigma -, Pi - and Delta -states is described by a model function. By adapting two parameters of this model function, the experimental findings can be reproduced within the experimental error in numerical calculations involving the relevant set of coupled differential equations. \u

    Gene linkage in man and Chinese hamster studied in somatic cell hybrids

    Get PDF
    Genetic studies of higher organisms, including man, are based on the analysis of segregation and recombination events resulting from se>.."Ual reproduction. In 1962 Pontecorvo predicted, however, that cultured cells could also be employed for this purpose. He suggested that parase::\"Ual events, detected in certain fungi, might occur also in 11in vitro11 cultured cells. Now, ten years later, there are strong indications that this prediction will indeed come true

    The performance of the EU-Rotate_N model in predicting the growth and nitrogen uptake of rotations of field vegetable crops in a Mediterranean environment

    Get PDF
    The EU-Rotate_N model was developed as a tool to estimate the growth and nitrogen (N) uptake of vegetable crop rotations across a wide range of European climatic conditions and to assess the economic and environmental consequences of alternative management strategies. The model has been evaluated under field conditions in Germany and Norway and under greenhouse conditions in China. The present work evaluated the model using Italian data to evaluate its performance in a warm and dry environment. Data were collected from four 2-year field rotations, which included lettuce (Lactuca sativa L.), fennel (Foeniculum vulgare Mill.), spinach (Spinacia oleracea L.), broccoli (Brassica oleracea L. var. italica Plenck) and white cabbage (B. oleracea convar. capitata var. alba L.); each rotation used three different rates of N fertilizer (average recommended N1, assumed farmer's practice N2=N1+0·3×N1 and a zero control N0). Although the model was not calibrated prior to running the simulations, results for above-ground dry matter biomass, crop residue biomass, crop N concentration and crop N uptake were promising. However, soil mineral N predictions to 0·6 m depth were poor. The main problem with the prediction of the test variables was the poor ability to capture N mineralization in some autumn periods and an inappropriate parameterization of fennel. In conclusion, the model performed well, giving results comparable with other bio-physical process simulation models, but for more complex crop rotations. The model has the potential for application in Mediterranean environments for field vegetable production

    Research Brief: More than Knowledge Transfer? The wider benefits of postgraduate taught programmes for international development

    Get PDF

    New distal marker closely linked to the fragile X locus

    Get PDF
    We have isolated II-10, a new X-chromosomal probe that identifies a highly informative two-allele TaqI restriction fragment length polymorphism at locus DXS466. Using somatic cell hybrids containing distinct portions of the long arm of the X chromosome, we could localize DXS466 between DXS296 and DXS304, both of which are closely linked distal markers for fragile X. This regional localization was supported by the analysis, in fragile X families, of recombination events between these three loci, the fragile X locus and locus DXS52, the latter being located at a more distal position. DXS466 is closely linked to the fragile X locus with a peak lod score of 7.79 at a recombination fraction of 0.02. Heterozygosity of DXS466 is approximately 50%. Its close proximity and relatively high informativity make DXS466 a valuable new diagnostic DNA marker for fragile X
    corecore