2 research outputs found

    Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes

    Get PDF
    Neuroblastoma is a childhood tumour of the peripheral sympathetic nervous system. The pathogenesis has for a long time been quite enigmatic, as only very few gene defects were identified in this often lethal tumour. Frequently detected gene alterations are limited to MYCN amplification (20%) and ALK activations (7%). Here we present a whole-genome sequence analysis of 87 neuroblastoma of all stages. Few recurrent amino-acid-changing mutations were found. In contrast, analysis of structural defects identified a local shredding of chromosomes, known as chromothripsis, in 18% of high-stage neuroblastoma. These tumours are associated with a poor outcome. Structural alterations recurrently affected ODZ3, PTPRD and CSMD1, which are involved in neuronal growth cone stabilization. In addition, ATRX, TIAM1 and a series of regulators of the Rac/Rho pathway were mutated, further implicating defects in neuritogenesis in neuroblastoma. Most tumours with defects in these genes were aggressive high-stage neuroblastomas, but did not carry MYCN amplifications. The genomic landscape of neuroblastoma therefore reveals two novel molecular defects, chromothripsis and neuritogenesis gene alterations, which frequently occur in high-risk tumours

    Cross-Tissue Transcriptomic Analysis of Human Secondary Lymphoid Organ-Residing ILC3s Reveals a Quiescent State in the Absence of Inflammation

    Get PDF
    A substantial number of human and mouse group 3 innate lymphoid cells (ILC3s) reside in secondary lymphoid organs, yet the phenotype and function of these ILC3s is incompletely understood. Here, we employed an unbiased cross-tissue transcriptomic approach to compare human ILC3s from non-inflamed lymph nodes and spleen to their phenotypic counterparts in inflamed tonsils and from circulation. These analyses revealed that, in the absence of inflammation, lymphoid organ-residing ILC3s lack transcription of cytokines associated with classical ILC3 functions. This was independent of expression of the natural cytotoxicity receptor NKp44. However, and in contrast to ILC3s from peripheral blood, lymphoid organ-residing ILC3s express activating cytokine receptors and have acquired the ability to be recruited into immune responses by inflammatory cytokines. This comprehensive cross-tissue dataset will allow for identification of functional changes in human lymphoid organ ILC3s associated with human disease. Bar-Ephraim et al. describe a cross-tissue transcriptional comparison of human ILC3s and show that ILC3s in lymph nodes and spleen share a transcriptional profile that is distinct from that of tonsil ILC3s. Lymphoid organ ILC3s are a substantial pool of resting cells that can be recruited into immune responses upon local activation
    corecore