7 research outputs found

    Distribution of genomic regions differentiating oak species assessed by QTL detection

    No full text
    Pedunculate oak and sessile oak are two sympatric interfertile species that exhibit leaf morphological differences. We aimed to detect quantitative trait loci (QTLs) of these traits in order to locate genomic regions involved in species differentiation. A total of 15 leaf morphological traits were assessed in a mixed forest stand composed of Quercus petraea and Q. robur and in a full-sib pedigree of Q. robur. The progeny of the full-sib family were vegetatively propagated in two successive experiments comprising 174 and 216 sibs, and assessments were made on two leaves collected on each of the 1080 and 1530 cuttings corresponding to the two experiments. Traits that exhibited strong species differences in the mixed stand tended also to have higher repeatability values in the mapping population, thus indicating higher genetic control. A genetic map was constructed for QTL detection. Composite interval mapping with the one QTL model was used for QTL detection. From one to three QTLs were detected for 13 traits. In-depth analysis of the QTLs, controlling the five morphological traits that exhibited the highest interspecific differences in the mixed stand, indicated that they were distributed on six linkage groups, with two clusters comprising QTLs of at least two discriminant traits. These results were reinforced when error 1 for QTL detection was set at 5% at the chromosome level, as up to nine clusters could be identified. In conclusion, traits involved in interspecific differentiation of oaks are under polygenic control and widespread in clusters across the genom
    corecore