30,616 research outputs found

    Commuting quantities and exceptional W-algebras

    Full text link
    Sets of commuting charges constructed from the current of a U(1) Kac-Moody algebra are found. There exists a set S_n of such charges for each positive integer n > 1; the corresponding value of the central charge in the Feigin-Fuchs realization of the stress tensor is c = 13-6n-6/n. The charges in each series can be written in terms of the generators of an exceptional W-algebra.Comment: 27 pages, KCL-TH-92-

    An eco-solution for track & trace of goods and third party logistics

    Get PDF
    This paper presents a new economic cost-effective solution known as the Web and telephony based method for tracking and tracing of goods and small and medium sized third party logistic providers. Considering that these companies usually operate on very flat margins, a comparison is made of the available track and trace technologies like GPS, mobile phone approximated GPS and Java based cell tracking in terms of costs, operating risks, and other evaluation criteria

    Surface segregation and the Al problem in GaAs quantum wells

    Full text link
    Low-defect two-dimensional electron systems (2DESs) are essential for studies of fragile many-body interactions that only emerge in nearly-ideal systems. As a result, numerous efforts have been made to improve the quality of modulation-doped Alx_xGa1−x_{1-x}As/GaAs quantum wells (QWs), with an emphasis on purifying the source material of the QW itself or achieving better vacuum in the deposition chamber. However, this approach overlooks another crucial component that comprises such QWs, the Alx_xGa1−x_{1-x}As barrier. Here we show that having a clean Al source and hence a clean barrier is instrumental to obtain a high-quality GaAs 2DES in a QW. We observe that the mobility of the 2DES in GaAs QWs declines as the thickness or Al content of the Alx_xGa1−x_{1-x}As barrier beneath the QW is increased, which we attribute to the surface segregation of Oxygen atoms that originate from the Al source. This conjecture is supported by the improved mobility in the GaAs QWs as the Al cell is cleaned out by baking

    Coulomb Oscillations in Antidots in the Integer and Fractional Quantum Hall Regimes

    Full text link
    We report measurements of resistance oscillations in micron-scale antidots in both the integer and fractional quantum Hall regimes. In the integer regime, we conclude that oscillations are of the Coulomb type from the scaling of magnetic field period with the number of edges bound to the antidot. Based on both gate-voltage and field periods, we find at filling factor {\nu} = 2 a tunneling charge of e and two charged edges. Generalizing this picture to the fractional regime, we find (again, based on field and gate-voltage periods) at {\nu} = 2/3 a tunneling charge of (2/3)e and a single charged edge.Comment: related papers at http://marcuslab.harvard.ed

    Bilayer Quantum Hall Systems at nuT = 1: Coulomb Drag and the Transition from Weak to Strong Interlayer Coupling

    Get PDF
    Measurements revealing anomalously large frictional drag at the transition between the weakly and strongly coupled regimes of a bilayer two-dimensional electron system at total Landau level filling factor nuT = 1 are reported. This result suggests the existence of fluctuations, either static or dynamic, near the phase boundary separating the quantized Hall state at small layer separations from the compressible state at larger separations. Interestingly, the anomalies in drag seem to persist to larger layer separations than does interlayer phase coherence as detected in tunneling

    Double layer two-dimensional electron systems: Probing the transition from weak to strong coupling with Coulomb drag

    Get PDF
    Frictional drag measurements revealing anomalously large dissipation at the transition between the weakly- and strongly-coupled regimes of a bilayer two-dimensional electron system at total Landau level filling factor νT=1\nu_T =1 are reported. This result suggests the existence of fluctuations, either static or dynamic, near the phase boundary separating the quantized Hall state at small layer separations from the compressible state at larger separations. Interestingly, the anomalies in drag seem to persist to larger layer separations than does interlayer phase coherence as detected in tunneling.Comment: 4 pages, 4 figure

    Reorientation of the stripe Phase of 2D Electrons by a Minute Density Modulation

    Full text link
    Interacting two-dimensional electrons confined in a GaAs quantum well exhibit isotropic transport when the Fermi level resides in the first excited (N=1N=1) Landau level. Adding an in-plane magnetic field (B∣∣B_{||}) typically leads to an anisotropic, stripe-like (nematic) phase of electrons with the stripes oriented perpendicular to the B∣∣B_{||} direction. Our experimental data reveal how a periodic density modulation, induced by a surface strain grating from strips of negative electron-beam resist, competes against the B∣∣B_{||}-induced orientational order of the stripe phase. Even a minute (<0.25%<0.25\%) density modulation is sufficient to reorient the stripes along the direction of the surface grating.Comment: Accepted for publication in Phys. Rev. Let

    Evidence for a ν=5/2\nu=5/2 Fractional Quantum Hall Nematic State in Parallel Magnetic Fields

    Full text link
    We report magneto-transport measurements for the fractional quantum Hall state at filling factor ν=\nu= 5/2 as a function of applied parallel magnetic field (B∣∣B_{||}). As B∣∣B_{||} is increased, the 5/2 state becomes increasingly anisotropic, with the in-plane resistance along the direction of B∣∣B_{||} becoming more than 30 times larger than in the perpendicular direction. Remarkably, the resistance anisotropy ratio remains constant over a relatively large temperature range, yielding an energy gap which is the same for both directions. Our data are qualitatively consistent with a fractional quantum Hall \textit{nematic} phase
    • …
    corecore