3,468 research outputs found
Agenda Setting in the State of the Union: The Impact on Legislative Success
This essay explores the success of the agenda set in the State of the Union and attempts to provide insight on the factors that affect this success. Specifically, I will examine many factors on legislation which include: How does the year in a President\u27s term affect legislative success? How does control of government affect legislative success? What role does partisanship play in the success of the agenda? After this analysis, I will evaluate the presidential success scores reported by the CQ almanac in relationship with the success of the President\u27s agenda
Polar Molecules with Three-Body Interactions on the Honeycomb Lattice
We study the phase diagram of ultra-cold bosonic polar molecules loaded on a
two-dimensional optical lattice of hexagonal symmetry controlled by external
electric and microwave fields. Following a recent proposal in Nature Physics
\textbf{3}, 726 (2007), such a system is described by an extended Bose-Hubbard
model of hard-core bosons, that includes both extended two- and three-body
repulsions. Using quantum Monte-Carlo simulations, exact finite cluster
calculations and the tensor network renormalization group, we explore the rich
phase diagram of this system, resulting from the strongly competing nature of
the three-body repulsions on the honeycomb lattice. Already in the classical
limit, they induce complex solid states with large unit cells and macroscopic
ground state degeneracies at different fractional lattice fillings. For the
quantum regime, we obtain effective descriptions of the various phases in terms
of emerging valence bond crystal states and quantum dimer models. Furthermore,
we access the experimentally relevant parameter regime, and determine the
stability of the crystalline phases towards strong two-body interactions
Progress in the development of an 88-mm bore 10 Tn3Sn dipole magnet
A 10 T, 2-layer cos(&thetas;)-dipole model magnet with an 88 mm clear bore utilizing an advanced powder-in-tube Nb3Sn conductor is being developed for the LHC. A dedicated conductor development program has resulted in a well performing Rutherford cable containing strands that uniquely exhibit both an overall current density of 600 A/mm2 @ 11 T and filaments with a diameter of 20 ¿m. The resistance between crossing strands amounts to 30-70 ¿¿ by insertion of a stainless steel core. After being exposed to a transverse pressure of 200 MPa identical cables show negligible permanent degradation of the critical current. The mechanical support structure is further optimized in order to reduce the peak stress in the mid-plane to below 130 MPa at full excitation and to control the pre-stress build-up during system assembly. Prior to the manufacturing of the final coils a dummy 2-layer pole is wound, heat-treated at 675°C and vacuum resin impregnated. This paper presents the current status of the magnet development program and highlights in particular the successful conductor developmen
Quantum phase transitions in the Kane-Mele-Hubbard model
We study the two-dimensional Kane-Mele-Hubbard model at half filling by means
of quantum Monte Carlo simulations. We present a refined phase boundary for the
quantum spin liquid. The topological insulator at finite Hubbard interaction
strength is adiabatically connected to the groundstate of the Kane-Mele model.
In the presence of spin-orbit coupling, magnetic order at large Hubbard U is
restricted to the transverse direction. The transition from the topological
band insulator to the antiferromagnetic Mott insulator is in the universality
class of the three-dimensional XY model. The numerical data suggest that the
spin liquid to topological insulator and spin liquid to Mott insulator
transitions are both continuous.Comment: 13 pages, 10 figures; final version; new Figs. 4(b) and 8(b
Dynamical structure factors and excitation modes of the bilayer Heisenberg model
Using quantum Monte Carlo simulations along with higher-order spin-wave
theory, bond-operator and strong-coupling expansions, we analyse the dynamical
spin structure factor of the spin-half Heisenberg model on the square-lattice
bilayer. We identify distinct contributions from the low-energy Goldstone modes
in the magnetically ordered phase and the gapped triplon modes in the quantum
disordered phase. In the antisymmetric (with respect to layer inversion)
channel, the dynamical spin structure factor exhibits a continuous evolution of
spectral features across the quantum phase transition, connecting the two types
of modes. Instead, in the symmetric channel we find a depletion of the spectral
weight when moving from the ordered to the disordered phase. While the
dynamical spin structure factor does not exhibit a well-defined distinct
contribution from the amplitude (or Higgs) mode in the ordered phase, we
identify an only marginally-damped amplitude mode in the dynamical singlet
structure factor, obtained from interlayer bond correlations, in the vicinity
of the quantum critical point. These findings provide quantitative information
in direct relation to possible neutron or light scattering experiments in a
fundamental two-dimensional quantum-critical spin system.Comment: 19 pages, 15 figure
Field-Induced Magnetic Order in Quantum Spin Liquids
We study magnetic field-induced three-dimensional ordering transitions in
low-dimensional quantum spin liquids, such as weakly coupled, antiferromagnetic
spin-1/2 Heisenberg dimers and ladders. Using stochastic series expansion
quantum Monte Carlo simulations, thermodynamic response functions are obtained
down to ultra-low temperatures. We extract the critical scaling exponents which
dictate the power-law dependence of the transition temperature on the applied
magnetic field. These are compared with recent experiments on candidate
materials and with predictions for the Bose-Einstein condensation of magnons
obtained in mean-field theory.Comment: RevTex, 4 pages with 5 figure
Comment on "Novel Superfluidity in a Trapped Gas of Fermi Atoms with Repulsive Interaction Loaded on an Optical Lattice"
In a recent letter Machida et al. [Phys. Rev. Lett. 93, 200402 (2004)]
concluded that in a trapped gas of fermions with repulsive interactions a
superfluid phase appears around the Mott-insulator at the center of the trap.
They base their conclusion on a negative binding energy, and a large weight for
a singlet formed by particles located at opposite sides of the Mott-insulator.
We show here that the observed effects are not related to superfluidity.Comment: Revtex file, 1 page, 1 figure, published versio
Fruits and Vegetables: A Survey of Ohio Fruit and Vegetable Producers and Market Operators - Summarized Results Apple Businesses Only
Exact date of working paper unknown
Universal scaling at field-induced magnetic phase transitions
We study field-induced magnetic order in cubic lattices of dimers with
antiferromagnetic Heisenberg interactions. The thermal critical exponents at
the quantum phase transition from a spin liquid to a magnetically ordered phase
are determined from Stochastic Series Expansion Quantum Monte Carlo
simulations. These exponents are independent of the interdimer coupling ratios,
and converge to the value obtained by considering the transition as a
Bose-Einstein condensation of magnons, alpha_(BEC) = 1.5. The scaling results
are of direct relevance to the spin-dimer systems TlCuCl_3 and KCuCl_3, and
explain the broad range of exponents reported for field-induced ordering
transitions.Comment: 4 pages, 4 eps-figure
- âŠ