3 research outputs found

    Diabetes diagnosis and care in sub-Saharan Africa: pooled analysis of individual data from 12 countries.

    No full text
    Despite widespread recognition that the burden of diabetes is rapidly growing in many countries in sub-Saharan Africa, nationally representative estimates of unmet need for diabetes diagnosis and care are in short supply for the region. We use national population-based survey data to quantify diabetes prevalence and met and unmet need for diabetes diagnosis and care in 12 countries in sub-Saharan Africa. We further estimate demographic and economic gradients of met need for diabetes diagnosis and care. We did a pooled analysis of individual-level data from nationally representative population-based surveys that met the following inclusion criteria: the data were collected during 2005-15; the data were made available at the individual level; a biomarker for diabetes was available in the dataset; and the dataset included information on use of core health services for diabetes diagnosis and care. We first quantified the population in need of diabetes diagnosis and care by estimating the prevalence of diabetes across the surveys; we also quantified the prevalence of overweight and obesity, as a major risk factor for diabetes and an indicator of need for diabetes screening. Second, we determined the level of met need for diabetes diagnosis, preventive counselling, and treatment in both the diabetic and the overweight and obese population. Finally, we did survey fixed-effects regressions to establish the demographic and economic gradients of met need for diabetes diagnosis, counselling, and treatment. We pooled data from 12 nationally representative population-based surveys in sub-Saharan Africa, representing 38 311 individuals with a biomarker measurement for diabetes. Across the surveys, the median prevalence of diabetes was 5% (range 2-14) and the median prevalence of overweight or obesity was 27% (range 16-68). We estimated seven measures of met need for diabetes-related care across the 12 surveys: (1) percentage of the overweight or obese population who received a blood glucose measurement (median 22% [IQR 11-37]); and percentage of the diabetic population who reported that they (2) had ever received a blood glucose measurement (median 36% [IQR 27-63]); (3) had ever been told that they had diabetes (median 27% [IQR 22-51]); (4) had ever been counselled to lose weight (median 15% [IQR 13-23]); (5) had ever been counselled to exercise (median 15% [IQR 11-30]); (6) were using oral diabetes drugs (median 25% [IQR 18-42]); and (7) were using insulin (median 11% [IQR 6-13]). Compared with those aged 15-39 years, the adjusted odds of met need for diabetes diagnosis (measures 1-3) were 2·22 to 3·53 (40-54 years) and 3·82 to 5·01 (≥55 years) times higher. The adjusted odds of met need for diabetes diagnosis also increased consistently with educational attainment and were between 3·07 and 4·56 higher for the group with 8 years or more of education than for the group with less than 1 year of education. Finally, need for diabetes care was significantly more likely to be met (measures 4-7) in the oldest age and highest educational groups. Diabetes has already reached high levels of prevalence in several countries in sub-Saharan Africa. Large proportions of need for diabetes diagnosis and care in the region remain unmet, but the patterns of unmet need vary widely across the countries in our sample. Novel health policies and programmes are urgently needed to increase awareness of diabetes and to expand coverage of preventive counselling, diagnosis, and linkage to diabetes care. Because the probability of met need for diabetes diagnosis and care consistently increases with age and educational attainment, policy makers should pay particular attention to improved access to diabetes services for young adults and people with low educational attainment. None

    Diabetes Prevalence and Its Relationship With Education, Wealth, and BMI in 29 Low- and Middle-Income Countries.

    No full text
    Diabetes is a rapidly growing health problem in low- and middle-income countries (LMICs), but empirical data on its prevalence and relationship to socioeconomic status are scarce. We estimated diabetes prevalence and the subset with undiagnosed diabetes in 29 LMICs and evaluated the relationship of education, household wealth, and BMI with diabetes risk. We pooled individual-level data from 29 nationally representative surveys conducted between 2008 and 2016, totaling 588,574 participants aged ≥25 years. Diabetes prevalence and the subset with undiagnosed diabetes was calculated overall and by country, World Bank income group (WBIG), and geographic region. Multivariable Poisson regression models were used to estimate relative risk (RR). Overall, prevalence of diabetes in 29 LMICs was 7.5% (95% CI 7.1-8.0) and of undiagnosed diabetes 4.9% (4.6-5.3). Diabetes prevalence increased with increasing WBIG: countries with low-income economies (LICs) 6.7% (5.5-8.1), lower-middle-income economies (LMIs) 7.1% (6.6-7.6), and upper-middle-income economies (UMIs) 8.2% (7.5-9.0). Compared with no formal education, greater educational attainment was associated with an increased risk of diabetes across WBIGs, after adjusting for BMI (LICs RR 1.47 [95% CI 1.22-1.78], LMIs 1.14 [1.06-1.23], and UMIs 1.28 [1.02-1.61]). Among 29 LMICs, diabetes prevalence was substantial and increased with increasing WBIG. In contrast to the association seen in high-income countries, diabetes risk was highest among those with greater educational attainment, independent of BMI. LMICs included in this analysis may be at an advanced stage in the nutrition transition but with no reversal in the socioeconomic gradient of diabetes risk

    Body-mass index and diabetes risk in 57 low-income and middle-income countries: a cross-sectional study of nationally representative, individual-level data in 685 616 adults.

    No full text
    The prevalence of overweight, obesity, and diabetes is rising rapidly in low-income and middle-income countries (LMICs), but there are scant empirical data on the association between body-mass index (BMI) and diabetes in these settings. In this cross-sectional study, we pooled individual-level data from nationally representative surveys across 57 LMICs. We identified all countries in which a WHO Stepwise Approach to Surveillance (STEPS) survey had been done during a year in which the country fell into an eligible World Bank income group category. For LMICs that did not have a STEPS survey, did not have valid contact information, or declined our request for data, we did a systematic search for survey datasets. Eligible surveys were done during or after 2008; had individual-level data; were done in a low-income, lower-middle-income, or upper-middle-income country; were nationally representative; had a response rate of 50% or higher; contained a diabetes biomarker (either a blood glucose measurement or glycated haemoglobin [HbA <sub>1c</sub> ]); and contained data on height and weight. Diabetes was defined biologically as a fasting plasma glucose concentration of 7·0 mmol/L (126·0 mg/dL) or higher; a random plasma glucose concentration of 11·1 mmol/L (200·0 mg/dL) or higher; or a HbA <sub>1c</sub> of 6·5% (48·0 mmol/mol) or higher, or by self-reported use of diabetes medication. We included individuals aged 25 years or older with complete data on diabetes status, BMI (defined as normal [18·5-22·9 kg/m <sup>2</sup> ], upper-normal [23·0-24·9 kg/m <sup>2</sup> ], overweight [25·0-29·9 kg/m <sup>2</sup> ], or obese [≥30·0 kg/m <sup>2</sup> ]), sex, and age. Countries were categorised into six geographical regions: Latin America and the Caribbean, Europe and central Asia, east, south, and southeast Asia, sub-Saharan Africa, Middle East and north Africa, and Oceania. We estimated the association between BMI and diabetes risk by multivariable Poisson regression and receiver operating curve analyses, stratified by sex and geographical region. Our pooled dataset from 58 nationally representative surveys in 57 LMICs included 685 616 individuals. The overall prevalence of overweight was 27·2% (95% CI 26·6-27·8), of obesity was 21·0% (19·6-22·5), and of diabetes was 9·3% (8·4-10·2). In the pooled analysis, a higher risk of diabetes was observed at a BMI of 23 kg/m <sup>2</sup> or higher, with a 43% greater risk of diabetes for men and a 41% greater risk for women compared with a BMI of 18·5-22·9 kg/m <sup>2</sup> . Diabetes risk also increased steeply in individuals aged 35-44 years and in men aged 25-34 years in sub-Saharan Africa. In the stratified analyses, there was considerable regional variability in this association. Optimal BMI thresholds for diabetes screening ranged from 23·8 kg/m <sup>2</sup> among men in east, south, and southeast Asia to 28·3 kg/m <sup>2</sup> among women in the Middle East and north Africa and in Latin America and the Caribbean. The association between BMI and diabetes risk in LMICs is subject to substantial regional variability. Diabetes risk is greater at lower BMI thresholds and at younger ages than reflected in currently used BMI cutoffs for assessing diabetes risk. These findings offer an important insight to inform context-specific diabetes screening guidelines. Harvard T H Chan School of Public Health McLennan Fund: Dean's Challenge Grant Program
    corecore