39 research outputs found

    Topology of COBE Microwave Background Fluctuations

    Full text link
    We have measured the topology (genus) of the fluctuations in the cosmic microwave background seen in the recently completed (four-year) data set produced by the COBE satellite. We find that the genus is consistent with that expected from a random-phase Gaussian distribution, as might be produced naturally in inflationary models.Comment: 2 pages, one Post-Script figure, MNRAS LaTeX Style (mn.sty), submitted to MNRA

    Hourly Variability in Q0957+561

    Get PDF
    We have continued our effort to re-reduce archival Q0957+561 brightness monitoring data and present results for 1629 R-band images using the methods for galaxy subtraction and seeing correction reported previously. The new dataset comes from 4 observing runs, several nights apiece, with sampling of typically 5 minutes, which allows the first measurement of the structure function for variations in the R-band from timescales of hours to years. Comparison of our reductions to previous reductions of the same data, and to r-band photometry produced at Apache Point Observatory shows good overall agreement. Two of the data runs, separated by 417 days, permit a sharpened value for the time delay of 417.4 days, valid only if the time delay is close to the now-fashionable 417-day value; our data do not constrain a delay if it is more than three days from this 417-day estimate. Our present results show no unambiguous signature of the daily microlensing, though a suggestive feature is found in the data. Both time delay measurement and microlensing searches suffer from from the lack of sampling at half-day offsets, inevitable at a single observatory, hence the need for round-the-clock monitoring with participation by multiple observatories.Comment: AASTeX 4.0 preprint style, 21 pages, 8 EPS figure

    Dynamics of ``Small Galaxies'' in the Hubble Deep Field

    Get PDF
    We have previously found in the Hubble Deep Field a significant angular correlation of faint, high color-redshift objects on scales below one arcsecond, or several kiloparsecs in metric size. We examine the correlation and nearest neighbor statistics to conclude that 38% of these objects in the HDF have a companion within one arcsecond, three times the number expected in a random distribution with the same number of objects. We examine three dynamical scenarios for these object multiplets: 1) the objects are star-forming regions within normal galaxies, whose disks have been relatively dimmed by K-correction and surface brightness dimming; 2) they are fragments merging into large galaxies; 3) they are satellites accreting onto normal L_* galaxies. We find that hypothesis 1 is most tenable. First, large galaxies in the process of a merger formation would have accumulated too much mass in their centers (5e12 M_sun inside 2 kpc) to correspond to present day objects. Second, accretion by dynamical friction occurs with a predictable density vs. radius slope, not seen among the faint HDF objects. Since the dynamical friction time is roughly (1 Gyr), a steady-state should have been reached by redshift z < 5. Star-forming regions within galaxies clearly present no dynamical problems. Since large spirals would still appear as such in the HDF, we favor a scenario in which the faint compact sources in the HDF are giant starforming regions within small normal galaxies, such as Magellanic irregulars. Finally we checked that reduction in mass-to-light from induced star-formation cannot alone explain the luminosity overdensity.Comment: AASTeX 4.0 (preprint), 4 PostScript figure

    A Rapid Microlensing Event in the Q0957+561 A,B Gravitational Lens System

    Get PDF
    We re-analyze brightness data sampled intensively over 5 nights at two epochs separated by the quasar lens time delay, to examine the nature of the observed microlensing. We find strong evidence for a microlensing event with an amplitude of 1% and a time scale of twelve hours. The existence of such rapid microlensing, albeit at low amplitude, imposes constraints on the nature of the quasar and of the baryonic dark matter
    corecore