33 research outputs found
A 1.1 to 1.9 GHz SETI Survey of the Kepler Field: I. A Search for Narrow-band Emission from Select Targets
We present a targeted search for narrow-band (< 5 Hz) drifting sinusoidal
radio emission from 86 stars in the Kepler field hosting confirmed or candidate
exoplanets. Radio emission less than 5 Hz in spectral extent is currently known
to only arise from artificial sources. The stars searched were chosen based on
the properties of their putative exoplanets, including stars hosting candidates
with 380 K > T_eq > 230 K, stars with 5 or more detected candidates or stars
with a super-Earth (R_p 50 day orbit. Baseband voltage data
across the entire band between 1.1 and 1.9 GHz were recorded at the Robert C.
Byrd Green Bank Telescope between Feb--Apr 2011 and subsequently searched
offline. No signals of extraterrestrial origin were found. We estimate that
fewer than ~1% of transiting exoplanet systems host technological civilizations
that are radio loud in narrow-band emission between 1-2 GHz at an equivalent
isotropically radiated power (EIRP) of ~1.5 x 10^21 erg s^-1, approximately
eight times the peak EIRP of the Arecibo Planetary Radar, and we limit the the
number of 1-2 GHz narrow-band-radio-loud Kardashev type II civilizations in the
Milky Way to be < 10^-6 M_solar^-1. Here we describe our observations, data
reduction procedures and results.Comment: Accepted to the Astrophysical Journa
Status of the UC-Berkeley SETI Efforts
We summarize radio and optical SETI programs based at the University of
California, Berkeley. The SEVENDIP optical pulse search looks for ns time scale
pulses at visible wavelengths using an automated 30 inch telescope. The ongoing
SERENDIP V.v sky survey searches for radio signals at the 300 meter Arecibo
Observatory. The currently installed configuration supports 128 million
channels over a 200 MHz bandwidth with ~1.6 Hz spectral resolution. SETI@home
uses the desktop computers of volunteers to analyze over 160 TB of data at
taken at Arecibo looking for two types of continuous wave signals and two types
of pulsed signals. A version to be released this summer adds autocorrelation
analysis to look for complex wave forms that have been repeated (and overlayed)
after a short delay. SETI@home will soon be processing data of Kepler exoplanet
systems collected at the GBT. The Astropulse project is the first SETI search
for s time scale dispersed pulses in the radio spectrum. We recently
reobserved 114 sky locations where microsecond pulses were detected. This data
is in process of being transferred to Berkeley for analysis.Comment: 8 pages, including 1 figure. Presented at SPIE Conf. 8152, San Diego,
CA, Aug 25, 201
A Scalable Correlator Architecture Based on Modular FPGA Hardware, Reuseable Gateware, and Data Packetization
A new generation of radio telescopes is achieving unprecedented levels of
sensitivity and resolution, as well as increased agility and field-of-view, by
employing high-performance digital signal processing hardware to phase and
correlate large numbers of antennas. The computational demands of these imaging
systems scale in proportion to BMN^2, where B is the signal bandwidth, M is the
number of independent beams, and N is the number of antennas. The
specifications of many new arrays lead to demands in excess of tens of PetaOps
per second.
To meet this challenge, we have developed a general purpose correlator
architecture using standard 10-Gbit Ethernet switches to pass data between
flexible hardware modules containing Field Programmable Gate Array (FPGA)
chips. These chips are programmed using open-source signal processing libraries
we have developed to be flexible, scalable, and chip-independent. This work
reduces the time and cost of implementing a wide range of signal processing
systems, with correlators foremost among them,and facilitates upgrading to new
generations of processing technology. We present several correlator
deployments, including a 16-antenna, 200-MHz bandwidth, 4-bit, full Stokes
parameter application deployed on the Precision Array for Probing the Epoch of
Reionization.Comment: Accepted to Publications of the Astronomy Society of the Pacific. 31
pages. v2: corrected typo, v3: corrected Fig. 1
What Next-Generation 21 cm Power Spectrum Measurements Can Teach Us About the Epoch of Reionization
A number of experiments are currently working towards a measurement of the 21
cm signal from the Epoch of Reionization. Whether or not these experiments
deliver a detection of cosmological emission, their limited sensitivity will
prevent them from providing detailed information about the astrophysics of
reionization. In this work, we consider what types of measurements will be
enabled by a next-generation of larger 21 cm EoR telescopes. To calculate the
type of constraints that will be possible with such arrays, we use simple
models for the instrument, foreground emission, and the reionization history.
We focus primarily on an instrument modeled after the
collecting area Hydrogen Epoch of Reionization Array (HERA) concept design, and
parameterize the uncertainties with regard to foreground emission by
considering different limits to the recently described "wedge" footprint in
k-space. Uncertainties in the reionization history are accounted for using a
series of simulations which vary the ionizing efficiency and minimum virial
temperature of the galaxies responsible for reionization, as well as the mean
free path of ionizing photons through the IGM. Given various combinations of
models, we consider the significance of the possible power spectrum detections,
the ability to trace the power spectrum evolution versus redshift, the
detectability of salient power spectrum features, and the achievable level of
quantitative constraints on astrophysical parameters. Ultimately, we find that
of collecting area is enough to ensure a very high significance
() detection of the reionization power spectrum in even the
most pessimistic scenarios. This sensitivity should allow for meaningful
constraints on the reionization history and astrophysical parameters,
especially if foreground subtraction techniques can be improved and
successfully implemented.Comment: 27 pages, 18 figures, updated SKA numbers in appendi
Breakthrough Listen follow-up of the reported transient signal observed at the Arecibo Telescope in the direction of Ross 128
We undertook observations with the Green Bank Telescope, simultaneously with the 300 m telescope in Arecibo, as a follow-up of a possible flare of radio emission from Ross 128. We report here the non-detections from the GBT observations in C band (4–8 GHz), as well as non-detections in archival data at L band (1.1–1.9 GHz). We suggest that a likely scenario is that the emission comes from one or more satellites passing through the same region of the sky