12 research outputs found

    Quantitation of Varicella-Zoster Virus DNA in Whole Blood, Plasma, and Serum by PCR and Electrochemiluminescence

    No full text
    We describe a highly sensitive assay for quantitation of varicella-zoster virus (VZV) DNA in blood, involving PCR amplification, solution hybridization with Tris-(2,2′-bipyridine)-ruthenium(II) chelate-labeled probes, and measurement by electrochemiluminescence (ECL). Extraction and amplification efficiencies were monitored by the inclusion of internal control (IC) DNA, mimicking the VZV target, in the DNA extraction. Viral DNA load was calculated from the ratio of VZV and IC ECL signals. The lower limit of sensitivity was 20 VZV DNA copies/ml of plasma or serum and 80 copies/ml of whole blood. In reconstruction experiments, expected and calculated VZV DNA loads were in excellent accordance. Blood specimens from 42 VZV-infected patients were tested for the presence of VZV DNA and showed detection rates of 86% in patients with varicella and 81% in patients with herpes zoster. In specimens obtained during the first week after onset of the rash, detection rates were 100 and 89%, respectively. Viral DNA was detected in all immunocompromised patients with herpes zoster, emphasizing the risk of disseminated disease in this patient group. VZV DNA load was similar in patients with varicella and multidermatomal herpes zoster and lower in patients with unidermatomal zoster. Despite the cell-associated nature of the virus, VZV DNA was detected in serum and plasma at high copy numbers, and at similar frequencies compared to whole-blood specimens. Quantitation of VZV DNA in blood is of potential importance for diagnosis and clinical management of VZV-infected patients. Plasma and serum provide convenient matrices for this purpose

    Persistent Detection of Varicella-Zoster Virus DNA in a Previously Healthy Child after Severe Chickenpox

    No full text
    In immunocompetent children with primary varicella-zoster virus (VZV) infection, peak viral loads are detected in peripheral blood near the onset of the vesicular rash. VZV DNA concentrations normally diminish and become undetectable within 3 weeks after the appearance of the exanthem. Here, we present a previously healthy, human immunodeficiency virus-negative, 4-year-old boy admitted with severe varicella. High viral loads (>340,000 copies/ml) were found in his blood, and the viral loads remained high for at least 1.5 years. Clinical recovery preceded complete clearance of the virus. General and VZV-specific immune reactivity were intact. NK cells and CD8(+) T cells were activated during acute infection, and VZV-specific CD4(+) T cells were detected at high frequencies. VZV DNA was initially detected in B cells, NK cells, and both CD4(+) and CD8(+) T cells. In contrast, during the persistent phase of VZV DNA detection, the viral DNA was primarily located in CD8(+) T cells. For the first time, we describe the persistent detection of VZV DNA in a previously healthy child

    Emergence of a CD4+CD28- granzyme B+, cytomegalovirus-specific T cell subset after recovery of primary cytomegalovirus infection

    No full text
    Cytotoxic CD4(+)CD28(-) T cells form a rare subset in human peripheral blood. The presence of CD4(+)CD28(-) cells has been associated with chronic viral infections, but how these particular cells are generated is unknown. In this study, we show that in primary CMV infections, CD4(+)CD28(-) T cells emerge just after cessation of the viral load, indicating that infection with CMV triggers the formation of CD4(+)CD28(-) T cells. In line with this, we found these cells only in CMV-infected persons. CD4(+)CD28(-) cells had an Ag-primed phenotype and expressed the cytolytic molecules granzyme B and perforin. Importantly, CD4(+)CD28(-) cells were to a large extent CMV-specific because proliferation was only induced by CMV-Ag, but not by recall Ags such as purified protein derivative or tetanus toxoid. CD4(+)CD28(-) cells only produced IFN-gamma after stimulation with CMV-Ag, whereas CD4(+)CD28(+) cells also produced IFN-gamma in response to varicella-zoster virus and purified protein derivative. Thus, CD4(+)CD28(-) T cells emerge as a consequence of CMV infectio

    Human cytomegalovirus DNA in plasma and serum specimens of renal transplant recipients is highly fragmented

    No full text
    Quantitation of cytomegalovirus (CMV) DNA in plasma and serum by PCR is increasingly used to identify patients at risk for developing CMV disease and to monitor the efficacy of antiviral therapy. Although CMV DNA levels are generally interpreted as viral loads, the exact nature of the viral DNA in these specimens is unknown. We studied the state of CMV DNA in plasma and serum specimens obtained from three renal transplant recipients at peak viral DNA levels during primary CMV infection. For this purpose, DNA isolated from these specimens was fractionated by size, and CMV DNA levels in the resulting DNA fractions were measured by quantitative PCR targeted at large (578-bp) and small (134-bp) amplicons. These experiments showed that the molecular sizes of DNA fragments from which CMV DNA is amplified were small ( <2,000 bp), indicating that CMV DNA in plasma and serum is highly fragmented. Furthermore, CMV DNA levels were consistently higher when targeted at the smaller amplicon, providing additional evidence for the fragmentation of viral DNA. In conclusion, the first results with three patients have shown that CMV DNA in plasma and serum is highly fragmented and does not necessarily reflect the amount of infectious virus. These observations have potential consequences for understanding CMV pathogenesis and interpreting CMV DNA levels in individual patient managemen

    Human Cytomegalovirus DNA in Plasma and Serum Specimens of Renal Transplant Recipients Is Highly Fragmented

    No full text
    Quantitation of cytomegalovirus (CMV) DNA in plasma and serum by PCR is increasingly used to identify patients at risk for developing CMV disease and to monitor the efficacy of antiviral therapy. Although CMV DNA levels are generally interpreted as viral loads, the exact nature of the viral DNA in these specimens is unknown. We studied the state of CMV DNA in plasma and serum specimens obtained from three renal transplant recipients at peak viral DNA levels during primary CMV infection. For this purpose, DNA isolated from these specimens was fractionated by size, and CMV DNA levels in the resulting DNA fractions were measured by quantitative PCR targeted at large (578-bp) and small (134-bp) amplicons. These experiments showed that the molecular sizes of DNA fragments from which CMV DNA is amplified were small (<2,000 bp), indicating that CMV DNA in plasma and serum is highly fragmented. Furthermore, CMV DNA levels were consistently higher when targeted at the smaller amplicon, providing additional evidence for the fragmentation of viral DNA. In conclusion, the first results with three patients have shown that CMV DNA in plasma and serum is highly fragmented and does not necessarily reflect the amount of infectious virus. These observations have potential consequences for understanding CMV pathogenesis and interpreting CMV DNA levels in individual patient management

    Incidence and risk factors of probable dengue virus infection among Dutch travelers to Asia.

    No full text
    We studied the incidence of dengue virus (DEN) infections in a cohort of Dutch short-term travellers to endemic areas in Asia during 1991-92. Sera were collected before and after travel. All post-travel sera were tested for DEN immunoglobulin M (IgM) [IgM capture (MAC)-enzyme-linked immunosorbent assay (ELISA)] and IgG (indirect ELISA). Probable DEN infection was defined as IgM seroconversion or a fourfold rise in IgG ratio in the absence of cross-reaction with antibody to Japanese encephalitis virus (JEV). Infections were considered clinically apparent in case of febrile illness (> 24 H) with headache, myalgia, arthralgia or rash. Probable DEN infection was found in 13 of 447 travellers (incidence rate 30/1000 person-months, 95% CI 17.4-51.6). One infection was considered secondary; no haemorrhagic fever occurred. The clinical-to-subclinical infection rate was 1:3.3. The risk of infectio
    corecore