2 research outputs found

    Control Requirements and Benchmarks for Quantum Error Correction

    Full text link
    Reaching useful fault-tolerant quantum computation relies on successfully implementing quantum error correction (QEC). In QEC, quantum gates and measurements are performed to stabilize the computational qubits, and classical processing is used to convert the measurements into estimated logical Pauli frame updates or logical measurement results. While QEC research has concentrated on developing and evaluating QEC codes and decoding algorithms, specification and clarification of the requirements for the classical control system running QEC codes are lacking. Here, we elucidate the roles of the QEC control system, the necessity to implement low latency feed-forward quantum operations, and suggest near-term benchmarks that confront the classical bottlenecks for QEC quantum computation. These benchmarks are based on the latency between a measurement and the operation that depends on it and incorporate the different control aspects such as quantum-classical parallelization capabilities and decoding throughput. Using a dynamical system analysis, we show how the QEC control system latency performance determines the operation regime of a QEC circuit: latency divergence, where quantum calculations are unfeasible, classical-controller limited runtime, or quantum-operation limited runtime where the classical operations do not delay the quantum circuit. This analysis and the proposed benchmarks aim to allow the evaluation and development of QEC control systems toward their realization as a main component in fault-tolerant quantum computation.Comment: 21+9(SM) pages, 6+3(SM) figure

    Quantum-classical processing and benchmarking at the pulse-level

    Full text link
    Towards the practical use of quantum computers in the NISQ era, as well as the realization of fault-tolerant quantum computers that utilize quantum error correction codes, pressing needs have emerged for the control hardware and software platforms. In particular, a clear demand has arisen for platforms that allow classical processing to be integrated with quantum processing. While recent works discuss the requirements for such quantum-classical processing integration that is formulated at the gate-level, pulse-level discussions are lacking and are critically important. Moreover, defining concrete performance benchmarks for the control system at the pulse-level is key to the necessary quantum-classical integration. In this work, we categorize the requirements for quantum-classical processing at the pulse-level, demonstrate these requirements with a variety of use cases, including recently published works, and propose well-defined performance benchmarks for quantum control systems. We utilize a comprehensive pulse-level language that allows embedding universal classical processing in the quantum program and hence allows for a general formulation of benchmarks. We expect the metrics defined in this work to form a solid basis to continue to push the boundaries of quantum computing via control systems, bridging the gap between low-level and application-level implementations with relevant metrics.Comment: 22 page
    corecore