45 research outputs found
Design considerations to ensure accuracy when using the resazurin reduction assay to noninvasively quantify cell expansion within perfused extracellular matrix scaffolds
Analysis of perfusion-based bioreactors for organ engineering and a detailed evaluation of dynamic changes within maturing cell-laden scaffolds are critical components of ex vivo tissue development that remain understudied topics in the tissue and organ engineering literature. Precise measurement of cell numbers within bioartificial tissues and extracellular matrix scaffolds is necessary to provide measurement assurance and rigorous characterization of cell behavior within three-dimensional (3D) scaffolds. Accurate benchmarking of tissue function and biosynthetic activity to cell number facilitates comparison of data across experiments and between laboratories to increase rigor and reproducibility in tissue engineering and biofabrication. Soluble, fluorescent indicators of metabolic activity are valuable, noninvasive tools for estimating viable cell number. We investigated experimental conditions in which resazurin is a reliable indicator of cell content within 3D extracellular matrix kidney and liver scaffolds, and we present recommendations on experimental methodology for its optimal use. Resazurin is reduced to resorufin in proportion to metabolic activity of viable cells. Using three renal cell lines and one hepatic cell line, we show that correlation of viable cell number with the rate of resorufin generation may deviate from linearity at higher cell density, low resazurin working volumes, and/or longer incubation times – all of which contribute to depleting the working pool of resazurin. Importantly, we also show that the resazurin reduction rate in cell-conditioned medium is about double that in fresh culture medium. This finding has the potential to increase assay sensitivity, while saving expensive media. In conclusion, while the resazurin reduction assay provides a powerful, noninvasive readout for cell growth within extracellular matrix scaffolds, assay conditions may strongly influence its applicability for accurate quantification of cell number. The approach and recommendations developed in this study to maintain the pool of reducible resazurin may be used as a guide for application-specific optimization of the resazurin reduction assay to obtain accurate measurements of cell content in bioengineered tissues
Hepatic tristetraprolin promotes insulin resistance through RNA destabilization of FGF21
The role of posttranscriptional metabolic gene regulatory programs in diabetes is not well understood. Here, we show that the RNA-binding protein tristetraprolin (TTP) is reduced in the livers of diabetic mice and humans and is transcriptionally induced in response to insulin treatment in murine livers in vitro and in vivo. Liver-specific Ttp-KO (lsTtp-KO) mice challenged with high-fat diet (HFD) have improved glucose tolerance and peripheral insulin sensitivity compared with littermate controls. Analysis of secreted hepatic factors demonstrated that fibroblast growth factor 21 (FGF21) is posttranscriptionally repressed by TTP. Consistent with increased FGF21, lsTtp-KO mice fed HFD have increased brown fat activation, peripheral tissue glucose uptake, and adiponectin production compared with littermate controls. Downregulation of hepatic Fgf21 via an adeno-associated virus-driven shRNA in mice fed HFD reverses the insulin-sensitizing effects of hepatic Ttp deletion. Thus, hepatic TTP posttranscriptionally regulates systemic insulin sensitivity in diabetes through liver-derived FGF21
Evolutionary Analyses of Staphylococcus aureus Identify Genetic Relationships between Nasal Carriage and Clinical Isolates
Nasal carriage of Staphylococcus aureus has long been hypothesized to be a major vector for the transmission of virulent strains throughout the community. To address this hypothesis, we have analyzed the relatedness between a cohort of nasal carriage strains and clinical isolates to understand better the genetic conformity therein. To assess the relatedness between nasal carriage and clinical isolates of S. aureus, a genetic association study was conducted using multilocus sequence typing (MLST) and typing of the hypervariable regions of clumping factor and fibronectin binding protein genes. At all loci analyzed, genetic associations between both nasal carriage and clinical isolates were observed. Computational analyses of MLST data indicate that nasal carriage and clinical isolates belong to the same genetic clusters (clades), despite differences in sequence type assignments. Genetic analyses of the hypervariable regions from the clumping factor and fibronectin binding protein genes revealed that not only do clinically relevant strains belong to identical genetic lineages as the nasal carriage isolates within our cohort, but they also exhibit 100% sequence similarity within these regions. The findings of this report indicate that strains of S. aureus being carried asymptomatically throughout the community via nasal colonization are genetically related to those responsible for high levels of morbidity and mortality
Self-Assemblage and Quorum in the Earthworm Eisenia fetida (Oligochaete, Lumbricidae)
Despite their ubiquity and ecological significance in temperate ecosystems, the behavioural ecology of earthworms is not well described. This study examines the mechanisms that govern aggregation behaviour specially the tendency of individuals to leave or join groups in the compost earthworm Eisenia fetida, a species with considerable economic importance, especially in waste management applications. Through behavioural assays combined with mathematical modelling, we provide the first evidence of self-assembled social structures in earthworms and describe key mechanisms involved in cluster formation. We found that the probability of an individual joining a group increased with group size, while the probability of leaving decreased. Moreover, attraction to groups located at a distance was observed, suggesting a role for volatile cues in cluster formation. The size of earthworm clusters appears to be a key factor determining the stability of the group. These findings enhance our understanding of intra-specific interactions in earthworms and have potential implications for extraction and collection of earthworms in vermicomposting processes
The Functions of Grainy Head-Like Proteins in Animals and Fungi and the Evolution of Apical Extracellular Barriers
The Grainy head (GRH) family of transcription factors are crucial for the development and repair of epidermal barriers in all animals in which they have been studied. This is a high-level functional conservation, as the known structural and enzymatic genes regulated by GRH proteins differ between species depending on the type of epidermal barrier being formed. Interestingly, members of the CP2 superfamily of transcription factors, which encompasses the GRH and LSF families in animals, are also found in fungi – organisms that lack epidermal tissues. To shed light on CP2 protein function in fungi, we characterized a Neurospora crassa mutant lacking the CP2 member we refer to as grainy head-like (grhl). We show that Neurospora GRHL has a DNA-binding specificity similar to that of animal GRH proteins and dissimilar to that of animal LSF proteins. Neurospora grhl mutants are defective in conidial-spore dispersal due to an inability to remodel the cell wall, and we show that grhl mutants and the long-known conidial separation-2 (csp-2) mutants are allelic. We then characterized the transcriptomes of both Neurospora grhl mutants and Drosophila grh mutant embryos to look for similarities in the affected genes. Neurospora grhl appears to play a role in the development and remodeling of the cell wall, as well as in the activation of genes involved in defense and virulence. Drosophila GRH is required to activate the expression of many genes involved in cuticular/epidermal-barrier formation. We also present evidence that GRH plays a role in adult antimicrobial defense. These results, along with previous studies of animal GRH proteins, suggest the fascinating possibility that the apical extracellular barriers of some animals and fungi might share an evolutionary connection, and that the formation of physical barriers in the last common ancestor was under the control of a transcriptional code that included GRH-like proteins
Targeting Heparin to Collagen within Extracellular Matrix Significantly Reduces Thrombogenicity and Improves Endothelialization of Decellularized Tissues
Thrombosis within small-diameter vascular grafts limits the development
of bioartificial, engineered vascular conduits, especially those derived
from extracellular matrix (ECM). Here we describe an easy-to-implement
strategy to chemically modify vascular ECM by covalently linking a
collagen binding peptide (CBP) to heparin to form a heparin derivative
(CBP–heparin) that selectively binds a subset of collagens.
Modification of ECM with CBP–heparin leads to increased deposition
of functional heparin (by ∼7.2-fold measured by glycosaminoglycan
composition) and a corresponding reduction in platelet binding (>70%)
and whole blood clotting (>80%) onto the ECM. Furthermore, addition
of CBP–heparin to the ECM stabilizes long-term endothelial
cell attachment to the lumen of ECM-derived vascular conduits, potentially
through recruitment of heparin-binding growth factors that ultimately
improve the durability of endothelialization in vitro. Overall, our
findings provide a simple yet effective method to increase deposition
of functional heparin on the surface of ECM-based vascular grafts
and thereby minimize thrombogenicity of decellularized tissue, overcoming
a significant challenge in tissue engineering of bioartificial vessels
and vascularized organs