75 research outputs found

    Sox2 Is Required for Maintenance and Differentiation of Bronchiolar Clara, Ciliated, and Goblet Cells

    Get PDF
    The bronchioles of the murine lung are lined by a simple columnar epithelium composed of ciliated, Clara, and goblet cells that together mediate barrier function, mucociliary clearance and innate host defense, vital for pulmonary homeostasis. In the present work, we demonstrate that expression of Sox2 in Clara cells is required for the differentiation of ciliated, Clara, and goblet cells that line the bronchioles of the postnatal lung. The gene was selectively deleted in Clara cells utilizing Scgb1a1-Cre, causing the progressive loss of Sox2 in the bronchioles during perinatal and postnatal development. The rate of bronchiolar cell proliferation was decreased and associated with the formation of an undifferentiated, cuboidal-squamous epithelium lacking the expression of markers of Clara cells (Scgb1a1), ciliated cells (FoxJ1 and α-tubulin), and goblet cells (Spdef and Muc5AC). By adulthood, bronchiolar cell numbers were decreased and Sox2 was absent in extensive regions of the bronchiolar epithelium, at which time residual Sox2 expression was primarily restricted to selective niches of CGRP staining neuroepithelial cells. Allergen-induced goblet cell differentiation and mucus production was absent in the respiratory epithelium lacking Sox2. In vitro, Sox2 activated promoter-luciferase reporter constructs for differentiation markers characteristic of Clara, ciliated, and goblet cells, Scgb1a1, FoxJ1, and Agr2, respectively. Sox2 physically interacted with Smad3 and inhibited TGF-β1/Smad3-mediated transcriptional activity in vitro, a pathway that negatively regulates proliferation. Sox2 is required for proliferation and differentiation of Clara cells that serve as the progenitor cells from which Clara, ciliated, and goblet cells are derived

    Familial pulmonary alveolar proteinosis caused by mutations in CSF2RA

    Get PDF
    Primary pulmonary alveolar proteinosis (PAP) is a rare syndrome characterized by accumulation of surfactant in the lungs that is presumed to be mediated by disruption of granulocyte/macrophage colony-stimulating factor (GM-CSF) signaling based on studies in genetically modified mice. The effects of GM-CSF are mediated by heterologous receptors composed of GM-CSF binding (GM-CSF-Rα) and nonbinding affinity-enhancing (GM-CSF-Rβ) subunits. We describe PAP, failure to thrive, and increased GM-CSF levels in two sisters aged 6 and 8 yr with abnormalities of both GM-CSF-Rα–encoding alleles (CSF2RA). One was a 1.6-Mb deletion in the pseudoautosomal region of one maternal X chromosome encompassing CSF2RA. The other, a point mutation in the paternal X chromosome allele encoding a G174R substitution, altered an N-linked glycosylation site within the cytokine binding domain and glycosylation of GM-CSF-Rα, severely reducing GM-CSF binding, receptor signaling, and GM-CSF–dependent functions in primary myeloid cells. Transfection of cloned cDNAs faithfully reproduced the signaling defect at physiological GM-CSF concentrations. Interestingly, at high GM-CSF concentrations similar to those observed in the index patient, signaling was partially rescued, thereby providing a molecular explanation for the slow progression of disease in these children. These results establish that GM-CSF signaling is critical for surfactant homeostasis in humans and demonstrate that mutations in CSF2RA cause familial PAP

    Does adiponectin play a role in pulmonary emphysema?

    No full text

    ABCA3 Mutations Associated with Pediatric Interstitial Lung Disease

    No full text
    Rationale: ABCA3 is a member of the ATP-binding cassette family of proteins that mediate the translocation of a wide variety of substrates, including lipids, across cellular membranes. Mutations in the gene encoding ABCA3 were recently identified in full-term neonates with fatal surfactant deficiency. Objective: To test the hypothesis that ABCA3 mutations are not always associated with fatal neonatal lung disease but are a cause of pediatric interstitial lung disease. Methods: DNA samples were obtained from 195 children with chronic lung disease of unknown etiology. The 30 coding exons of the ABCA3 gene were sequenced in four unrelated children with a referring diagnosis of desquamative interstitial pneumonitis and who were older than 10 years at the time of enrollment. Results: Three of four patients (ages 16, 23, and 11 years) with desquamative interstitial pneumonitis had ABCA3 mutations identified on both alleles. All three had the same missense mutation (E292V) and a second unique mutation. The E292V mutation was not found on 200 control alleles from adults without lung disease, but seven additional patients of the remaining study patients had the E292V mutation on one allele. Immunohistochemical analysis of surfactant protein expression in three patients revealed a specific staining pattern for surfactant protein-B, which was the same pattern observed in several infants with fatal lung disease due to ABCA3 mutations. Conclusion: ABCA3 mutations cause some types of interstitial lung disease in pediatric patients

    Conditional Deletion of Pten Causes Bronchiolar Hyperplasia

    No full text
    Tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid phosphatase that regulates multiple cellular processes including cell polarity, migration, proliferation, and carcinogenesis. In this work, we demonstrate that conditional deletion of Pten (PtenΔ/Δ) in the respiratory epithelial cells of the developing mouse lung caused epithelial cell proliferation and hyperplasia as early as 4 to 6 weeks of age. While bronchiolar cell differentiation was normal, as indicated by β-tubulin and FOXJ1 expression in ciliated cells and by CCSP expression in nonciliated cells, cell proliferation (detected by expression of Ki-67, phospho-histone-H3, and cyclin D1) was increased and associated with activation of the AKT/mTOR survival pathway. Deletion of Pten caused papillary epithelial hyperplasia characterized by a hypercellular epithelium lining papillae with fibrovascular cores that protruded into the airway lumens. Cell polarity, as assessed by subcellular localization of cadherin, β-catenin, and zonula occludens-1, was unaltered. PTEN is required for regulation of epithelial cell proliferation in the lung and for the maintenance of the normal simple columnar epithelium characteristics of bronchi and bronchioles

    Conditional Recombination Reveals Distinct Subsets of Epithelial Cells in Trachea, Bronchi, and Alveoli

    No full text
    To identify relationships amongst tracheal and alveolar epithelial cells during lung development, we used conditional systems controlled by the rat CCSP and human SFTPC gene promoters to express Cre-recombinase in the developing mouse lung, thereby permanently labeling cells by expression of alkaline phosphatase or green fluorescent protein. When controlled by the rat CCSP promoter, continuous exposure of the fetus to doxycycline caused widespread recombination in conducting airway epithelial cells, including cells of the trachea, bronchi, and bronchioles before birth, and in both conducting and peripheral airways after birth. Neuroepithelial cells, identified by CGRP staining, were never labeled. Recombination and permanent labeling were observed in both ciliated and nonciliated respiratory epithelial cells, demonstrating their derivation from common progenitor cells during lung morphogenesis. Remarkable dorsal–ventral and cephalo–caudal labeling patterns, established before birth, were identified by recombination controlled by the rat CCSP gene promoter. In the trachea, subsets of epithelial cells labeled by the CCSP promoter were organized horizontally along the dorsal–ventral axis of the trachea, where selective labeling of cells juxtaposed to tracheal and bronchial cartilage was observed. In sharp contrast, recombination controlled by the human SFTPC gene promoter identified related cells that were organized in linear patterns along the cephalo–caudal axis of the conducting airways. Conditional expression of Cre-recombinase in the respiratory epithelium provides a useful model for the study of gene expression and function in the mouse respiratory tract and in the lung
    • …
    corecore