52 research outputs found

    Subsidence history of the Ediacaran Johnnie Formation and related strata of southwest Laurentia: Implications for the age and duration of the Shuram isotopic excursion and animal evolution

    Get PDF
    The Johnnie Formation and associated Ediacaran strata in southwest Laurentia are ~3000 m thick, with a Marinoan cap carbonate sequence at the bottom, and a transition from Ediacaran to Cambrian fauna at the top. About halfway through the sequence, the Shuram negative carbon isotopic excursion occurs within the Rainstorm Member near the top of the Johnnie Formation, followed by a remarkable valley incision event. At its type locality in the northwest Spring Mountains, Nevada, the Johnnie lithostratigraphy consists of three distinctive sand-rich intervals alternating with four siltstone/carbonate-rich intervals, which appear correlative with other regional ­Johnnie Formation outcrops. Carbon isotope ratios in the sub–Rainstorm Member part of the Johnnie Formation are uniformly positive for at least 400 m below the Shuram excursion and compare well with sub–Shuram excursion profiles from the ­Khufai Formation in Oman. There is historical consensus that the Johnnie and overlying formations were deposited on a thermally subsiding passive margin. Following previous authors, we used Paleozoic horizons of known biostratigraphic age to define a time-dependent exponential sub­sidence model, and extrapolated the model back in time to estimate the ages of the Shuram excursion and other prominent Ediacaran horizons. The model suggests that the Shuram excursion occurred from 585 to 579 Ma, and that incision of the Rainstorm Member shelf occurred during the 579 Ma Gaskiers glaciation. It further suggests that the base of the Johnnie Formation is ca. 630 Ma, consistent with the underlying Noonday Formation representing a Marinoan cap carbonate sequence. Our results contrast with suggestions by previous workers that the Shuram excursion followed the Gaskiers event by some 20–30 m.y. We suggest instead that the Shuram and Gaskiers events were contemporaneous with the biostratigraphic transition from acantho­morphic to leiospherid acritarchs, and with the first appearance of widespread macroscopic animal life, 38 m.y. prior to the Ediacaran-Cambrian boundary

    The Neotethyan Sanandaj-Sirjan zone of Iran as an archetype for passive margin-arc transitions

    Get PDF
    The Sanandaj-Sirjan zone of Iran is a northwest trending orogenic belt immediately north of the Zagros suture, which represents the former position of the Neotethys Ocean. The zone contains the most extensive, best preserved record of key events in the formation and evolution of the Neotethys, from its birth in Late Paleozoic time through its demise during the mid-Tertiary collision of Arabia with Eurasia. The record includes rifting of continental fragments off of the northern margin of Gondwanaland, formation of facing passive continental margins, initiation of subduction along the northern margin, and progressive development of a continental magmatic arc. The latter two of these events are critical phases of the Wilson Cycle that, elsewhere in the world, are poorly preserved in the geologic record because of superimposed events. Our new synthesis reaffirms the similarity between this zone and various terranes to the north in Central Iran. Late Paleozoic rifting, preserved as A-type granites and accelerated subsidence, was followed by a phase of pronounced subsidence and shallow marine sedimentation in Permian through Triassic time, marking the formation and evolution of passive margins on both sides of the suture. Subduction and arc magmatism began in latest Triassic/Early Jurassic time, culminating at ~170 Ma. The extinction of arc magmatism in this zone, and its shift northeastward to form the subparallel Urumieh-Dokhtar arc, occurred diachronously along strike, in Late Cretaceous or Paleogene time. Post-Cretaceous uplift transformed the zone from a primarily marine borderland into a marine archipelago that persisted until mid-Tertiary time

    Comment on "Neotethyan subduction ignited the Iran arc and back-arc differently" by Shafaii Moghadam et al. (2020)

    Get PDF
    Shafaii Moghadam et al. (2020) contribute important new data on Late Cretaceous-Tertiary subduction- related magmatism in Iran, but their plate convergence model, wherein Neotethyan subduction begins in mid-Cretaceous time (c. 100 Ma), overlooks well established facts relating to the tectonic history of Neotethys, in regard to global plate reconstructions, paleolatitude data, the regional stratigraphy, geochronology and geochemistry, and metamorphic history. Based on their model, Neotethys subduction beneath Eurasia began at ~100 Ma, meaning that the Neotethys was spreading and bounded by opposing passive margins during Jurassic and Early Cretaceous time, for ~100 Ma prior to their proposed onset of Neotethyan convergence. Consequently, their subduction model contradicts (1) the Indian Ocean spreading history derived from magnetic anomalies; (2) continental paleolatitude data from paleomagnetism; (3) sedimentary and igneous evolution of the Mesozoic continental margins in Arabia and southern Asia, (4) the age and geochemistry of Jurassic igneous rocks in southernmost Eurasia; and (5) the preservation of Early to Middle Jurassic eclogite metamorphism and exhumation on the northern side of the Arabia-Eurasia suture. Reconciliation of each of these omissions and contradictions of their model would be welcome, and perhaps an advisory that readers may wish to evaluate their concept of Cretaceous subduction initiation with due circumspection

    Comment on "Neotethyan subduction ignited the Iran arc and back-arc differently" by Shafaii Moghadam et al. (2020)

    Get PDF
    Shafaii Moghadam et al. (2020) contribute important new data on Late Cretaceous-Tertiary subduction- related magmatism in Iran, but their plate convergence model, wherein Neotethyan subduction begins in mid-Cretaceous time (c. 100 Ma), overlooks well established facts relating to the tectonic history of Neotethys, in regard to global plate reconstructions, paleolatitude data, the regional stratigraphy, geochronology and geochemistry, and metamorphic history. Based on their model, Neotethys subduction beneath Eurasia began at ~100 Ma, meaning that the Neotethys was spreading and bounded by opposing passive margins during Jurassic and Early Cretaceous time, for ~100 Ma prior to their proposed onset of Neotethyan convergence. Consequently, their subduction model contradicts (1) the Indian Ocean spreading history derived from magnetic anomalies; (2) continental paleolatitude data from paleomagnetism; (3) sedimentary and igneous evolution of the Mesozoic continental margins in Arabia and southern Asia, (4) the age and geochemistry of Jurassic igneous rocks in southernmost Eurasia; and (5) the preservation of Early to Middle Jurassic eclogite metamorphism and exhumation on the northern side of the Arabia-Eurasia suture. Reconciliation of each of these omissions and contradictions of their model would be welcome, and perhaps an advisory that readers may wish to evaluate their concept of Cretaceous subduction initiation with due circumspection

    Evidence for mechanical coupling and strong Indian lower crust beneath southern Tibet

    Get PDF
    How surface deformation within mountain ranges relates to tectonic processes at depth is not well understood. The upper crust of the Tibetan Plateau is generally thought to be poorly coupled to the underthrusting Indian crust because of an intervening low-viscosity channel. Here, however, we show that the contrast in tectonic regime between primarily strike-slip faulting in northern Tibet and dominantly normal faulting in southern Tibet requires mechanical coupling between the upper crust of southern Tibet and the underthrusting Indian crust. Such coupling is inconsistent with the presence of active ‘channel flow’ beneath southern Tibet, and suggests that the Indian crust retains its strength as it underthrusts the plateau. These results shed new light on the debates regarding the mechanical properties of the continental lithosphere, and the deformation of Tibet

    Characterization of site-specific GPS errors using a short-baseline network of braced monuments at Yucca Mountain, southern Nevada

    Get PDF
    We use a short-baseline network of braced monuments to investigate site-specific GPS effects. The network has baseline lengths of ∼10, 100, and 1000 m. Baseline time series have root mean square (RMS) residuals, about a model for the seasonal cycle, of 0.05–0.24 mm for the horizontal components and 0.20–0.72 mm for the radial. Seasonal cycles occur, with amplitudes of 0.04–0.60 mm, even for the horizontal components and even for the shortest baselines. For many time series these lag seasonal cycles in local temperature measurements by 23–43 days. This could suggest that they are related to bedrock thermal expansion. Both shorter-period signals and seasonal cycles for shorter baselines to REP2, the one short-braced monument in our network, are correlated with temperature, with no lag time. Differences between REP2 and the other stations, which are deep-braced, should reflect processes occurring in the upper few meters of the ground. These correlations may be related to thermal expansion of these upper ground layers, and/or thermal expansion of the monuments themselves. Even over these short distances we see a systematic increase in RMS values with increasing baseline length. This, and the low RMS levels, suggests that site-specific effects are unlikely to be the limiting factor in the use of similar GPS sites for geophysical investigations

    The Neotethyan Sanandaj-Sirjan zone of Iran as an archetype for passive margin-arc transitions

    Get PDF
    The Sanandaj-Sirjan zone of Iran is a northwest trending orogenic belt immediately north of the Zagros suture, which represents the former position of the Neotethys Ocean. The zone contains the most extensive, best preserved record of key events in the formation and evolution of the Neotethys, from its birth in Late Paleozoic time through its demise during the mid-Tertiary collision of Arabia with Eurasia. The record includes rifting of continental fragments off of the northern margin of Gondwanaland, formation of facing passive continental margins, initiation of subduction along the northern margin, and progressive development of a continental magmatic arc. The latter two of these events are critical phases of the Wilson Cycle that, elsewhere in the world, are poorly preserved in the geologic record because of superimposed events. Our new synthesis reaffirms the similarity between this zone and various terranes to the north in Central Iran. Late Paleozoic rifting, preserved as A-type granites and accelerated subsidence, was followed by a phase of pronounced subsidence and shallow marine sedimentation in Permian through Triassic time, marking the formation and evolution of passive margins on both sides of the suture. Subduction and arc magmatism began in latest Triassic/Early Jurassic time, culminating at ~170 Ma. The extinction of arc magmatism in this zone, and its shift northeastward to form the subparallel Urumieh-Dokhtar arc, occurred diachronously along strike, in Late Cretaceous or Paleogene time. Post-Cretaceous uplift transformed the zone from a primarily marine borderland into a marine archipelago that persisted until mid-Tertiary time

    Thermochronometry across the Austroalpine-Pennine boundary, Central Alps, Switzerland: Orogen-perpendicular normal fault slip on a major ‘overthrust’ and its implications for orogenesis

    Get PDF
    Fifty-one new and 309 published thermochronometric ages (nine systems with closure temperatures ranging from ~450 to 70°C) from the Graubünden region of the Central Alps demonstrate that a pronounced thermal mismatch between the Austroalpine allochthon (Alpine “orogenic lid”) and the Pennine zone persisted until at least 29 Ma and, allowably, until circa 18 Ma. The observed mismatch supports previous suggestions that the famous “overthrust” between the Austroalpine allochthon and the Pennine zone, historically regarded as primarily an Eocene top-north thrust fault, is in fact primarily an Oligocene-Miocene normal fault that has a minimum of 60 km of displacement with top-south or top-southeast sense of shear. Two hallmarks of Alpine geology, deposition of the foredeep Molasse and emplacement of the Helvetic nappes, appear to be coeval, peripheral manifestations of crustal thickening via the interposition of the Pennine zone as a northward intruding wedge between the Austroalpine “lid” and the European cratonic margin, with the Helvetic system (European margin) acting as the “floor” of the wedge. We presume the Penninic wedge is driven by the buoyant rise of subducted crust no longer able to remain attached to the descending slab. If so, emplacement of the Pennine wedge could have occurred mainly after Adria was juxtaposed against cratonic Europe
    • …
    corecore