6 research outputs found

    Odour Impact Assessment in a Changing Climate

    No full text
    (1) Background: The impact of odour sources as stock farms on neighbouring residential areas might increase in the future because the relevant climatic parameters will be modified due to climate change. (2) Methodology: Separation distances are calculated for two Central European sites with considerable livestock activity influenced by different orographic and climatic conditions. Furthermore, two climate scenarios are considered, namely, the time period 1981–2010 (present climate) and the period 2036–2065 (future climate). Based on the provided climatic parameters, stability classes are derived as input for local-scale air pollution modelling. The separation distances are determined using the Lagrangian particle diffusion model LASAT. (3) Results: Main findings comprise the changes of stability classes between the present and the future climate and the resulting changes in the modelled odour impact. Model results based on different schemes for stability classification are compared. With respect to the selected climate scenarios and the variety of the stability schemes, a bandwidth of affected separation distances results. (4) Conclusions: The investigation reveals to what extent livestock husbandry will have to adapt to climate change, e.g., with impacts on today’s licensing processes

    Reduction of the Economic Risk by Adaptation Measures to Alleviate Heat Stress in Confined Buildings for Growing-Fattening Pigs Modelled by a Projection for Central Europe in 2030

    No full text
    Economic risks for livestock production are caused by volatile commodities and market conditions, but also by environmental drivers such as increasing uncertainties due to weather anomalies and global warming. These risks impact the gross margin of farmers and can stimulate investment decisions. For confined pig and poultry production, farmers can reduce the environmental impact by implementing specific adaptation measures (AMs) to reduce heat stress. A simulation model driven by meteorological data was used to calculate indoor climate for 1981 to 2017. This dataset was extrapolated for a projection in the year 2030. The heat stress was calculated for a business-as-usual livestock building and for several AMs. For 2030, the expected value of the reduction of the gross margin was calculated by EUR 3.98 a−1 per animal place for the business-as-usual scenario. The results show that only energy-saving adaptation measures to reduce the inlet air temperature are appropriate to reduce the economic risk to the level of the year 1980 between EUR 0.03 a−1 and EUR 1.02 a−1 per animal place. The efficiency of other AMs to reduce heat stress is distinctly lower (between EUR 2.62 a−1 and EUR 3.80 a−1 per animal place). The results in this study can support the decision making of farmers concerning adaptation management and investments. It can inform agricultural policy design as well as technological development

    Reduction of the Economic Risk by Adaptation Measures to Alleviate Heat Stress in Confined Buildings for Growing-Fattening Pigs Modelled by a Projection for Central Europe in 2030

    No full text
    Economic risks for livestock production are caused by volatile commodities and market conditions, but also by environmental drivers such as increasing uncertainties due to weather anomalies and global warming. These risks impact the gross margin of farmers and can stimulate investment decisions. For confined pig and poultry production, farmers can reduce the environmental impact by implementing specific adaptation measures (AMs) to reduce heat stress. A simulation model driven by meteorological data was used to calculate indoor climate for 1981 to 2017. This dataset was extrapolated for a projection in the year 2030. The heat stress was calculated for a business-as-usual livestock building and for several AMs. For 2030, the expected value of the reduction of the gross margin was calculated by EUR 3.98 a−1 per animal place for the business-as-usual scenario. The results show that only energy-saving adaptation measures to reduce the inlet air temperature are appropriate to reduce the economic risk to the level of the year 1980 between EUR 0.03 a−1 and EUR 1.02 a−1 per animal place. The efficiency of other AMs to reduce heat stress is distinctly lower (between EUR 2.62 a−1 and EUR 3.80 a−1 per animal place). The results in this study can support the decision making of farmers concerning adaptation management and investments. It can inform agricultural policy design as well as technological development

    Economic Risk Assessment by Weather-Related Heat Stress Indices for Confined Livestock Buildings: A Case Study for Fattening Pigs in Central Europe

    No full text
    In the last decades, farm animals kept in confined and mechanically ventilated livestock buildings have been increasingly confronted with heat stress (HS) due to global warming. These adverse conditions cause a depression of animal health and welfare and a reduction of the performance up to an increase in mortality. To facilitate sound management decisions, livestock farmers need relevant arguments, which quantify the expected economic risk and the corresponding uncertainty. The economic risk was determined for the pig fattening sector based on the probability of HS and the calculated decrease in gross margin. The model calculation for confined livestock buildings showed that HS indices calculated by easily available meteorological parameters can be used for assessment quantification of indoor HS, which has been difficult to determine. These weather-related HS indices can be applied not only for an economic risk assessment but also for weather-index based insurance for livestock farms. Based on the temporal trend between 1981 and 2017, a simple model was derived to assess the likelihood of HS for 2020 and 2030. Due to global warming, the return period for a 90-percentile HS index is reduced from 10 years in 2020 to 3–4 years in 2030. The economic impact of HS on livestock farms was calculated by the relationship between an HS index based on the temperature-humidity index (THI) and the reduction of gross margin. From the likelihood of HS and this economic impact function, the probability of the economic risk was determined. The reduction of the gross margin for a 10-year return period was determined for 1980 with 0.27 € per year per animal place and increased by 20-fold to 5.13 € per year per animal place in 2030

    Reduction of the Economic Risk by Adaptation Measures to Alleviate Heat Stress in Confined Buildings for Growing-Fattening Pigs Modelled by a Projection for Central Europe in 2030

    No full text
    Economic risks for livestock production are caused by volatile commodities and market conditions, but also by environmental drivers such as increasing uncertainties due to weather anomalies and global warming. These risks impact the gross margin of farmers and can stimulate investment decisions. For confined pig and poultry production, farmers can reduce the environmental impact by implementing specific adaptation measures (AMs) to reduce heat stress. A simulation model driven by meteorological data was used to calculate indoor climate for 1981 to 2017. This dataset was extrapolated for a projection in the year 2030. The heat stress was calculated for a business-as-usual livestock building and for several AMs. For 2030, the expected value of the reduction of the gross margin was calculated by EUR 3.98 a(-1) per animal place for the business-as-usual scenario. The results show that only energy-saving adaptation measures to reduce the inlet air temperature are appropriate to reduce the economic risk to the level of the year 1980 between EUR 0.03 a(-1) and EUR 1.02 a(-1) per animal place. The efficiency of other AMs to reduce heat stress is distinctly lower (between EUR 2.62 a(-1) and EUR 3.80 a(-1) per animal place). The results in this study can support the decision making of farmers concerning adaptation management and investments. It can inform agricultural policy design as well as technological development
    corecore