62 research outputs found

    The IceCube Neutrino Observatory, the Pierre Auger Observatory and the Telescope Array: Joint Contribution to the 34th International Cosmic Ray Conference (ICRC 2015)

    Full text link
    We have conducted three searches for correlations between ultra-high energy cosmic rays detected by the Telescope Array and the Pierre Auger Observatory, and high-energy neutrino candidate events from IceCube. Two cross-correlation analyses with UHECRs are done: one with 39 cascades from the IceCube `high-energy starting events' sample and the other with 16 high-energy `track events'. The angular separation between the arrival directions of neutrinos and UHECRs is scanned over. The same events are also used in a separate search using a maximum likelihood approach, after the neutrino arrival directions are stacked. To estimate the significance we assume UHECR magnetic deflections to be inversely proportional to their energy, with values 33^\circ, 66^\circ and 99^\circ at 100 EeV to allow for the uncertainties on the magnetic field strength and UHECR charge. A similar analysis is performed on stacked UHECR arrival directions and the IceCube sample of through-going muon track events which were optimized for neutrino point-source searches.Comment: one proceeding, the 34th International Cosmic Ray Conference, 30 July - 6 August 2015, The Hague, The Netherlands; will appear in PoS(ICRC2015

    The IceCube Neutrino Observatory, the Pierre Auger Observatory and the Telescope Array:Joint Contribution to the 34th International Cosmic Ray Conference (ICRC 2015)

    Get PDF

    The IceCube Neutrino Observatory, the Pierre Auger Observatory and the Telescope Array:Joint Contribution to the 34th International Cosmic Ray Conference (ICRC 2015)

    Get PDF
    We have conducted three searches for correlations between ultra-high energy cosmic rays detected by the Telescope Array and the Pierre Auger Observatory, and high-energy neutrino candidate events from IceCube. Two cross-correlation analyses with UHECRs are done: one with 39 cascades from the IceCube `high-energy starting events' sample and the other with 16 high-energy `track events'. The angular separation between the arrival directions of neutrinos and UHECRs is scanned over. The same events are also used in a separate search using a maximum likelihood approach, after the neutrino arrival directions are stacked. To estimate the significance we assume UHECR magnetic deflections to be inversely proportional to their energy, with values 33^\circ, 66^\circ and 99^\circ at 100 EeV to allow for the uncertainties on the magnetic field strength and UHECR charge. A similar analysis is performed on stacked UHECR arrival directions and the IceCube sample of through-going muon track events which were optimized for neutrino point-source searches

    Carbonic acid monohydrate

    No full text
    In the water-carbon dioxide system, above a pressure of 4.4 GPa, a crystalline phase consisting of an adduct of the two substances can be observed to exist in equilibrium with the aqueous fluid. The phase had been found to be triclinic, and its unit-cell parameters determined, but the full crystalline and even molecular structure remained undetermined. Here, we report new diamond-anvil cell, X-ray diffraction data of a quality sufficient to allow us to propose a full structure. The crystal exists in the P1 space group. Unit-cell parameters (at 6.5 GPa and 140 °C) are a = 5.8508(14), b = 6.557(5), c = 6.9513(6) Å, α = 88.59(2)°, β = 79.597(13)°, and γγ = 67.69(4)°. Direct solution for the heavy atoms (carbon and oxygen) revealed CO3_3 units, with co-planar, but isolated, O units. Construction of a hydrogen network, in accordance with the requirements of hydrogen bonding and with minimum allowed distances between non-bonded atoms, indicates that the phase consists of a monohydrate of carbonic acid (H2_2CO3_3·H2_2O) with the carbonic acid molecule in the cis-trans configuration. This is the first experimental determination of the crystalline structure of a H2_2CO3_3 compound. The structure serves as a guide for ab initio calculations that have until now explored only anhydrous H2_2CO3_3 solids, while validating calculations that indicated that high pressures should stabilize H2_2CO3_3 in the solid state. If 4.4 GPa is the lowest pressure at which the phase is thermodynamically stable, this probably precludes its existence in our solar system, although it may exist on larger, volatile-rich exoplanets. If, however, its range of stability extends to lower pressures at lower temperatures (which possibility has not yet been adequately explored), then it might have been be a stable form of CO2_2 within the water-rich moons and dwarf planets prior to differentiation and might still exist on an undifferentiated Callisto

    Computational and experimental methodology for site-matched investigations of the influence of mineral mass fraction and collagen orientation on the axial indentation modulus of lamellar bone

    Get PDF
    Relationships between mineralization, collagen orientation and indentation modulus were investigated in bone structural units from the mid-shaft of human femora using a site-matched design. Mineral mass fraction, collagen fibril angle and indentation moduli were measured in registered anatomical sites using backscattered electron imaging, polarized light microscopy and nano-indentation, respectively. Theoretical indentation moduli were calculated with a homogenization model from the quantified mineral densities and mean collagen fibril orientations. The average indentation moduli predicted based on local mineralization and collagen fibers arrangement were not significantly different from the average measured experimentally with nanoindentation (p=0.9). Surprisingly, no substantial correlation of the measured indentation moduli with tissue mineralization and/or collagen fiber arrangement was found. Nano-porosity, micro-damage, collagen cross-links, non-collagenous proteins or other parameters affect the indentation measurements. Additional testing/simulation methods need to be considered to properly understand the variability of indentation moduli, beyond the mineralization and collagen arrangement in bone structural units
    corecore