2,518 research outputs found

    Protostars and Outflows in the NGC7538 - IRS9 Cloud Core

    Full text link
    New high resolution observations of HCO+ J=1-0, H13CN J=1-0, SO 2,2 - 1,1, and continuum with BIMA at 3.4 mm show that the NGC7538 - IRS9 cloud core is a site of active ongoing star formation. Our observations reveal at least three young bipolar molecular outflows, all ~ 10,000 -- 20,000 years old. IRS9 drives a bipolar, extreme high velocity outflow observed nearly pole on. South of IRS9 we find a cold, protostellar condensation with a size of ~ 14" x 6" with a mass > 250 Msun. This is the center of one of the outflows and shows deep, red-shifted self absorption in HCO+, suggesting that there is a protostar embedded in the core, still in a phase of active accretion. This source is not detected in the far infrared, suggesting that the luminosity < 10^4 Lsun; yet the mass of the outflow is ~ 60 Msun. The red-shifted HCO+ self-absorption profiles observed toward the southern protostar and IRS9 predict accretion rates of a few times 10^-4 to 10^-3 Msun/yr. Deep VLA continuum observations at 3.6 cm show that IRS9 coincides with a faint thermal VLA source, but no other young star in the IRS9 region has any detectable free-free emission at a level of ~ 60 microJy at 3.6 cm. The HCO+ abundance is significantly enhanced in the hot IRS9 outflow. A direct comparison of mass estimates from HCO+ and CO for the well-characterized red-shifted IRS9 outflow predicts an HCO+ enhancement of more than a factor of 30, or [HCO+/H2] >= 6 10^-8.Comment: 40 pages, 3 tables and 10 figures included; to appear in Ap

    Group Polarization in the Team Dictator Game reconsidered

    Get PDF
    While most papers on team decision-making find teams to behave more selfish, less trusting and less altruistic than individuals, Cason and Mui (1997) report that teams are more altruistic than individuals in a dictator game. Using a within-subjects design we re-examine group polarization by letting subjects make individual as well as team decisions in an experimental dictator game. In our experiment teams are more selfish than individuals, and the most selfish team member has the strongest influence on team decisions. Various sources of the different findings in Cason and Mui (1997) and in our paper are discussed

    Sorting Via Screening Versus Signaling: A Theoretic and Experimental Comparison

    Full text link
    Similar to Kübler et al. (2008, GEB 64, p. 219-236), we compare sorting in games with asymmetric incomplete information theoretically and experimentally. Rather than distinguishing two very different sequential games, we use the same game format and capture the structural difference of screening and signaling only via their payoff specification. The experiment thus relies on the same verbal instructions. Although the equilibrium outcomes coincide, greater efficiency losses off the equilibrium play due to sorting under signaling, compared to screening, is predicted and confirmed experimentally

    A Spitzer Space Telescope far-infrared spectral atlas of compact sources in the Magellanic Clouds. II. The Small Magellanic Cloud

    Full text link
    We present 52-93 micron spectra, obtained with the Spitzer Space Telescope, of luminous compact far-IR sources in the SMC. These comprise 9 Young Stellar Objects (YSOs), the compact HII region N81 and a similar object within N84, and two red supergiants (RSGs). The spectra of the sources in N81 (of which we also show the ISO-LWS spectrum between 50-170 micron) and N84 both display strong [OI] 63-micron and [OIII] 88-micron fine-structure line emission. We attribute these lines to strong shocks and photo-ionized gas, respectively, in a ``champagne flow'' scenario. The nitrogen content of these two HII regions is very low, definitely N/O<0.04 but possibly as low as N/O<0.01. Overall, the oxygen lines and dust continuum are weaker in star-forming objects in the SMC than in the LMC. We attribute this to the lower metallicity of the SMC compared to that of the LMC. Whilst the dust mass differs in proportion to metallicity, the oxygen mass differs less; both observations can be reconciled with higher densities inside star-forming cloud cores in the SMC than in the LMC. The dust in the YSOs in the SMC is warmer (37-51 K) than in comparable objects in the LMC (32-44 K). We attribute this to the reduced shielding and reduced cooling at the low metallicity of the SMC. On the other hand, the efficiency of the photo-electric effect to heat the gas is found to be indistinguishable to that measured in the same manner in the LMC, 0.1-0.3%. This may result from higher cloud-core densities, or smaller grains, in the SMC. The dust associated with the two RSGs in our SMC sample is cool, and we argue that it is swept-up interstellar dust, or formed (or grew) within the bow-shock, rather than dust produced in these metal-poor RSGs themselves. Strong emission from crystalline water ice is detected in at least one YSO. (abridged)Comment: Accepted for publication in The Astronomical Journa

    Azimuthal Correlations in the Target Fragmentation Region of High Energy Nuclear Collisions

    Get PDF
    Results on the target mass dependence of proton and pion pseudorapidity distributions and of their azimuthal correlations in the target rapidity range 1.73η1.32-1.73 \le \eta \le 1.32 are presented. The data have been taken with the Plastic-Ball detector set-up for 4.9 GeV p + Au collisions at the Berkeley BEVALAC and for 200 AA\cdotGeV/cc p-, O-, and S-induced reactions on different nuclei at the CERN-SPS. The yield of protons at backward rapidities is found to be proportional to the target mass. Although protons show a typical ``back-to-back'' correlations, a ``side-by-side'' correlation is observed for positive pions, which increases both with target mass and with impact parameter of a collision. The data can consistently be described by assuming strong rescattering phenomena including pion absorption effects in the entire excited target nucleus.Comment: 7 pages, figures included, complete postscript available at ftp://qgp.uni-muenster.de/pub/paper/azi-correlations.ps submitted to Phys. Lett.

    The Dust-to-Gas Ratio in the Small Magellanic Cloud Tail

    Get PDF
    The Tail region of the Small Magellanic Cloud (SMC) was imaged using the MIPS instrument on the Spitzer Space Telescope as part of the SAGE-SMC Spitzer Legacy. Diffuse infrared emission from dust was detected in all the MIPS bands. The Tail gas-to-dust ratio was measured to be 1200 +/- 350 using the MIPS observations combined with existing IRAS and HI observations. This gas-to-dust ratio is higher than the expected 500-800 from the known Tail metallicity indicating possible destruction of dust grains. Two cluster regions in the Tail were resolved into multiple sources in the MIPS observations and local gas-to-dust ratios were measured to be ~440 and ~250 suggests dust formation and/or significant amounts of ionized gas in these regions. These results support the interpretation that the SMC Tail is a tidal tail recently stripped from the SMC that includes gas, dust, and young stars.Comment: 6 pages, 3 figures, ApJ Letters, in press, (version with full resolution figures at http://www.stsci.edu/~kgordon/papers/PS_files/sage-smc_taildust_v1.62.pdf

    Ice chemistry in embedded young stellar objects in the Large Magellanic Cloud

    Get PDF
    We present spectroscopic observations of a sample of 15 embedded young stellar objects (YSOs) in the Large Magellanic Cloud (LMC). These observations were obtained with the Spitzer Infrared Spectrograph (IRS) as part of the SAGE-Spec Legacy program. We analyze the two prominent ice bands in the IRS spectral range: the bending mode of CO_2 ice at 15.2 micron and the ice band between 5 and 7 micron that includes contributions from the bending mode of water ice at 6 micron amongst other ice species. The 5-7 micron band is difficult to identify in our LMC sample due to the conspicuous presence of PAH emission superimposed onto the ice spectra. We identify water ice in the spectra of two sources; the spectrum of one of those sources also exhibits the 6.8 micron ice feature attributed to ammonium and methanol. We model the CO_2 band in detail, using the combination of laboratory ice profiles available in the literature. We find that a significant fraction (> 50%) of CO_2 ice is locked in a water-rich component, consistent with what is observed for Galactic sources. The majority of the sources in the LMC also require a pure-CO_2 contribution to the ice profile, evidence of thermal processing. There is a suggestion that CO_2 production might be enhanced in the LMC, but the size of the available sample precludes firmer conclusions. We place our results in the context of the star formation environment in the LMC.Comment: Minor corrections to Table 2. Accepted for publication in ApJ, 66 pages, 9 figures (some in color), 4 table

    Outflows from the high-mass protostars NGC 7538 IRS1/2 observed with bispectrum speckle interferometry -- Signatures of flow precession

    Get PDF
    NGC 7538 IRS1 is a high-mass (approx. 30 M_sun) protostar with a CO outflow, an associated UCHII region, and a linear methanol maser structure, which might trace a Keplerian-rotating circumstellar disk. The directions of the various associated axes are misaligned with each other. We investigate the near-infrared morphology of the source to clarify the relations among the various axes. K'-band bispectrum speckle interferometry was performed at two 6-meter-class telescopes -- the BTA 6m telescope and the 6.5m MMT. Complementary IRAC images from the Spitzer Space Telescope Archive were used to relate the structures detected with the outflow at larger scales. High-dynamic range images show fan-shaped outflow structure in which we detect 18 stars and several blobs of diffuse emission. We interpret the misalignment of various outflow axes in the context of a disk precession model, including numerical hydrodynamic simulations of the molecular emission. The precession period is approx. 280 years and its half-opening angle is 40 degrees. A possible triggering mechanism is non-coplanar tidal interaction of an (undiscovered) close companion with the circumbinary protostellar disk. Our observations resolve the nearby massive protostar NGC 7538 IRS2 as a close binary with separation of 195 mas. We find indications for shock interaction between the outflow activities in IRS1 and IRS2. Indications of outflow precession have been discovered to date in a number of massive protostars, all with large precession angles 20--45 degrees. This might explain the difference between the outflow widths in low- and high-mass stars and add support to a common collimation mechanism.Comment: 20 pages; 8 figures; Accepted by A&A on April 10, 2006; Image quality reduced due to astro-ph file size limitations; Please download a version with high-quality images from http://www.mpifr-bonn.mpg.de/staff/tpreibis/ngc7538.pd

    Social Preferences and the Efficiency of Bilateral Exchange

    Get PDF
    Under what conditions do social preferences, such as altruism or a concern for fair outcomes, generate efficient trade? I analyze theoretically a simple bilateral exchange game: Each player sequentially takes an action that reduces his own material payoff but increases the other player’s. Each player’s preferences may depend on both his/her own material payoff and the other player’s. I identify necessary conditions and sufficient conditions on the players’ preferences for the outcome of their interaction to be Pareto efficient. The results have implications for interpreting the rotten kid theorem, gift exchange in the laboratory, and gift exchange in the field

    Microscopic Study of Superdeformed Rotational Bands in 151Tb

    Full text link
    Structure of eight superdeformed bands in the nucleus 151Tb is analyzed using the results of the Hartree-Fock and Woods-Saxon cranking approaches. It is demonstrated that far going similarities between the two approaches exist and predictions related to the structure of rotational bands calculated within the two models are nearly parallel. An interpretation scenario for the structure of the superdeformed bands is presented and predictions related to the exit spins are made. Small but systematic discrepancies between experiment and theory, analyzed in terms of the dynamical moments, J(2), are shown to exist. The pairing correlations taken into account by using the particle-number-projection technique are shown to increase the disagreement. Sources of these systematic discrepancies are discussed -- they are most likely related to the yet not optimal parametrization of the nuclear interactions used.Comment: 32 RevTeX pages, 15 figures included, submitted to Physical Review
    corecore