3,027 research outputs found
Origin and reduction of wakefields in photonic crystal accelerator cavities
Photonic crystal (PhC) defect cavities that support an accelerating mode tend
to trap unwanted higher-order modes (HOMs) corresponding to zero-group-velocity
PhC lattice modes at the top of the bandgap. The effect is explained quite
generally from photonic band and perturbation theoretical arguments. Transverse
wakefields resulting from this effect are observed in a hybrid dielectric PhC
accelerating cavity based on a triangular lattice of sapphire rods. These
wakefields are, on average, an order of magnitude higher than those in the
waveguide-damped Compact Linear Collider (CLIC) copper cavities. The avoidance
of translational symmetry (and, thus, the bandgap concept) can dramatically
improve HOM damping in PhC-based structures.Comment: 11 pages, 18 figures, 2 table
Simulations of particle acceleration beyond the classical synchrotron burnoff limit in magnetic reconnection: An explanation of the Crab flares
It is generally accepted that astrophysical sources cannot emit synchrotron
radiation above 160 MeV in their rest frame. This limit is given by the balance
between the accelerating electric force and the radiation reaction force acting
on the electrons. The discovery of synchrotron gamma-ray flares in the Crab
Nebula, well above this limit, challenges this classical picture of particle
acceleration. To overcome this limit, particles must accelerate in a region of
high electric field and low magnetic field. This is possible only with a
non-ideal magnetohydrodynamic process, like magnetic reconnection. We present
the first numerical evidence of particle acceleration beyond the synchrotron
burnoff limit, using a set of 2D particle-in-cell simulations of
ultra-relativistic pair plasma reconnection. We use a new code, Zeltron, that
includes self-consistently the radiation reaction force in the equation of
motion of the particles. We demonstrate that the most energetic particles move
back and forth across the reconnection layer, following relativistic Speiser
orbits. These particles then radiate >160 MeV synchrotron radiation rapidly,
within a fraction of a full gyration, after they exit the layer. Our analysis
shows that the high-energy synchrotron flux is highly variable in time because
of the strong anisotropy and inhomogeneity of the energetic particles. We
discover a robust positive correlation between the flux and the cut-off energy
of the emitted radiation, mimicking the effect of relativistic Doppler
amplification. A strong guide field quenches the emission of >160 MeV
synchrotron radiation. Our results are consistent with the observed properties
of the Crab flares, supporting the reconnection scenario.Comment: 15 pages, 16 figures, Accepted for publication in The Astrophysical
Journa
- …