20 research outputs found

    Data rescue of historical wind observations in Sweden since the 1920s

    Get PDF
    Instrumental measurements of wind speed and direction from the 1920s to the 1940s from 13 stations in Sweden have been rescued and digitized, making 165 additional station years of wind data available through the Swedish Meteorological and Hydrological Institute&rsquo;s open data portal. These stations measured wind through different versions of cup-type anemometers and were mainly situated at lighthouses along the coasts and at airports. The work followed the protocol "Guidelines on Best Practices for Climate Data Rescue" of the World Meteorological Organization consisting of (i) designing a template for digitization; (ii) digitizing records in paper journals by a scanner; (iii) typing numbers of wind speed and direction data into the template and (iv) performing quality control of the raw observation data. Along with the digitization of the wind observations, meta data from the stations were collected and compiled as support to the following quality control and homogenization of the wind data. The meta data mainly consist of changes in observer and a small number of changes in instrument types and positions. The rescue of these early wind observations can help improve our understanding of long-term wind changes and multidecadal variability (e.g., the "stilling" vs. "reversal" phenomena), but also to evaluate and assess climate simulations of the past. Digitized data can be accessed through the SMHI open data portal: https://www.smhi.se/data, last access: 26 December 2022, and Zenodo repository: https://doi.org/10.5281/zenodo.5850264, last access: 26 December 2022, (Zhou et al., 2022).</p

    The contribution of large‑scale atmospheric circulation to variations of observed near‑surface wind speed across Sweden since 1926

    Get PDF
    This study investigates the centennial-scale (i.e., since 1926) variability of observed nearsurface wind speed across Sweden. Results show that wind speed underwent various phases of change during 1926–2019, i.e., (a) a clear slowdown during 1926–1960; (b) a stabilization from 1960 to 1990; (c) another clear slowdown during 1990–2003; (d) a slight recovery/stabilization period for 2003–2014, which may continue with a possible new slowdown. Furthermore, the performance of three reanalysis products in representing past wind variations is evaluated. The observed low-frequency variability is properly simulated by the selected reanalyses and is linked to the variations of different large-scale atmospheric circulation patterns (e.g., the North Atlantic Oscillation). However, the evident periods of decreasing trend during 1926–1960 and 1990–2003, which drive most of the stilling in the last century, are missing in the reanalyses and cannot be realistically modeled through multiple linear regression by only using indexes of atmospheric circulation. Therefore, this study reveals that changes in large-scale atmospheric circulation mainly drive the low-frequency variability of observed near-surface wind speed, while other factors (e.g., changes in surface roughness) are crucial for explaining the periods of strong terrestrial stilling across Swede

    Sub-daily rainfall extremes in the Nordic–Baltic region

    Get PDF
    Short-duration rainfall extremes are associated with a range of societal hazards, notably pluvial flooding but in addition, e.g., erosion-driven nutrient transport and point-source contamination. Fundamental for all analysis, modelling and risk assessment related to short-duration rainfall extremes is the access to and analysis of high-resolution observations. In this study, sub-daily rainfall observations from 543 meteorological stations in the Nordic–Baltic region were collected, quality-controlled and consistently analyzed in terms of records, return levels, geographical and climatic dependencies, time of occurrence of maxima and trends. The results reflect the highly heterogeneous rainfall climate in the region, with longitudinal and latitudinal gradients as well as local variability, and overall agree with previous national investigations. Trend analyses in Norway and Denmark indicated predominantly positive trends in the period 1980–2018, in line with previous investigations. Gridded data sets with estimated return levels and dates of occurrence (of annual maxima) are provided open access. We encourage further efforts towards international exchange of sub-daily rainfall observations as well as consistent regional analyses in order to attain the best possible knowledge on which rainfall extremes are to be expected in present as well as future climates

    Snödjup i Sverige 1904/05 – 2013/14

    No full text
    Rapporten ger en beskrivning av snöförhĂ„llandena i Sverige under vintrarna 1904/05 till 2013/14. Speciellt har vinterns största snödjup, antal dagar med snötĂ€cke och stora snödjupsökningar under ett dygn studerats. Snödjupsrekord för olika mĂ„nader och landsdelar har sammanstĂ€llts. SvĂ„ra snövintrar beskrivs liksom olika exempel pĂ„ extrema snöfall och snödjup med Ă„terkomsttiden 10 och 50 Ă„r.Vid en jĂ€mförelse av vintrarna under perioderna 1991 – 2014 med 1961 – 1990 sĂ„ har vinterns största snödjup och antal dagar med snötĂ€cke minskat i nĂ€stan hela landet.Stora snödjupsökningar frĂ„n en dag till nĂ€sta beror ofta pĂ„ sĂ„ kallade snökanoner som oftast bildas över Östersjön vid vind frĂ„n öster. Speciellt utsatt för snökanoner Ă€r Norrlandskusten frĂ„n SkellefteĂ„ ner till GĂ€vle men Ă€ven SmĂ„landskusten, VĂ€nern och VĂ€ttern Ă€r drabbat.Den vinter som varit snörikast Ă€r 1965/66 om man ser till vinterns största snödjup i Sverige som helhet. I olika delar av Sverige har det under andra vintrar förekommit större snödjup Ă€n under 1965/66. Exempelvis var det extremt mycket snö i fjĂ€llen 1988/89 och vintern 2009/10 var den snörikaste vintern i Götaland under hela den studerade perioden

    Luftfuktighet : Variationer i Sverige

    No full text
    I denna rapport ges en allmĂ€n beskrivning av vattenĂ„nga som Ă€r en genomskinlig luktfri gas. Hur gasen varierar utomhus i Sverige beskrivs sĂ„vĂ€l geografiskt som under Ă„ret och dygnet. Luftfuktighetsdata frĂ„n 121 automatiska vĂ€derstationer som varit i drift under perioden 1996 – 2012 har anvĂ€nts. MĂ€tningarna har gjorts pĂ„ 1,5-2 meter över mark. Olika mĂ€tinstrument för luftfuktighet presenteras liksom olika fuktighetsmĂ„tt som daggpunkt, vĂ„t temperatur, absolut fuktighet, blandningsförhĂ„llande, entalpi mm.Den absoluta fuktigheten som anger hur stor massa vattenĂ„nga en kubikmeter av luften innehĂ„ller Ă€r högst sommartid och lĂ€gst nĂ€r det Ă€r som kallast. VĂ€rdena Ă€r högst lĂ€ngs kusterna i södra Sverige och avtar norrut och med avstĂ„ndet frĂ„n kusten. Dygnsvariationen av den absoluta fuktigheten Ă€r i genomsnitt inte sĂ„ stor.Dessutom har mĂ„nadsmedelvĂ€rdet av vattenĂ„nga studerats för olika mĂ„nader sedan 1951. Digitaliserade fuktighetsdata har inte funnits att tillgĂ„ före 1951. Tio stationer har anvĂ€nts, frĂ„n BredĂ„kra i söder till Arjeplog i norr, för att berĂ€kna mĂ„nadsmedelvĂ€rden. MĂ„naderna maj, augusti och november har valts tillsammans med Ă„rsvĂ€rdet. Den absoluta fuktigheten har ökat under alla tre mĂ„naderna och för Ă„rsvĂ€rdet, men enbart för maj, augusti och för Ă„rsvĂ€rdet Ă€r ökningen statistiskt sĂ€kerstĂ€lld.Ingen statistisk sĂ€kerstĂ€lld förĂ€ndring finns av den relativa fuktigheten för perioden 1951-2012 för medelvĂ€rdet av de tio utvalda stationerna under mĂ„naderna maj, augusti och november.Om temperaturen sjunker till daggpunkten blir luften mĂ€ttad med vattenĂ„nga och den relativa luftfuktigheten blir 100 %. Om temperaturen sjunker ytterligare kondenserar vattenĂ„ngan till vattendroppar, dimma, dagg eller frost bildas. Den högsta daggpunkten som rapporterats i Sverige Ă€r 23,8 °C pĂ„ FĂ„rö vid Gotland 29 juli 1994 och i HĂ€llum i VĂ€stergötland 30 juni 1997. Vid det senare tillfĂ€llet var temperaturen samtidigt 28,4 °C och den relativa fuktigheten 76 %.Den relativa luftfuktigheten anges vanligen i procent (%) och Ă€r ett mĂ„tt pĂ„ hur mycket vattenĂ„nga luften innehĂ„ller i förhĂ„llande till hur mycket vattenĂ„nga som maximalt kan förekomma i gasform vid rĂ„dande temperatur. MĂ€ngden vattenĂ„nga som kan förekomma i gasform ökar med temperaturen. LĂ€gst relativ fuktighet Ă€r det i genomsnitt dagtid under vĂ„r och försommar medan det Ă€r högst relativ fuktighet nattetid och under vintern. I maj, dĂ„ havet kyler, Ă€r den relativa fuktigheten högre lĂ€ngs den svenska kusten Ă€n i inlandet. I november dĂ„ vattnet vĂ€rmts upp under sommaren rĂ„der det omvĂ€nda förhĂ„llandet, den relativa fuktigheten Ă€r lĂ€gre vid kusten Ă€n i inlandet.I Helsingborg Ă€r den relativa fuktigheten i genomsnitt 50-60 % dĂ„ temperaturen Ă€r 25 °C men nĂ€r temperaturen Ă€r mellan 0 och 10 plusgrader Ă€r fuktigheten betydligt högre, 90-100 %.This report gives a general description of water vapour which is a transparent and odourlessgas, how this gas varies geographically outdoors in Sweden as well as the diurnal and annualvariation. Humidity data from 121 automatic weather stations that were operational during theperiod 1996-2012 was used. The measurements were taken at 1.5 to 2 meters above the groundlevel. Different measuring instruments for humidity are presented and also different humiditymeasurements like dew point, wet bulb, absolute humidity, mixing ratio, enthalpy etc.The absolute humidity which is the mass of water vapour in a cubic meter of air is highest insummer and lowest during the coldest days in winter. The highest values are measured alongthe coasts of southern Sweden and the value decreases northwards and with distance from thecoast. Diurnal variation of the absolute humidity is in average relatively small.In addition, monthly mean water vapour is studied for various months since 1951. Digitizedhumidity data have not been available before in 1951. Ten stations are used, from BredĂ„kra inthe south of Sweden to Arjeplog in the north, for calculating monthly averages. The monthsMay, August and November have been chosen together with the annual value. The absolutehumidity increased during the three months and also the annual value. For the annual value andfor May and August the increase is statistically significant not for November.There is no statistically significant change of the average relative humidity during the period1951-2012 for the average of ten selected stations for the months of May, August or November.If the temperature drops to the dew point the air becomes saturated with water vapour and therelative humidity becomes 100 %. If the temperature drops further the water vapourcondensates to water droplets and fog, dew or frost is formed. The highest dew point reportedin Sweden is 23.8 °C at FĂ„rö north of the island Gotland on 29 July 1994 and in HĂ€llum inVĂ€stergötland on 30 June 1997. At the latter occasion the temperature was 28.4 °C and therelative humidity 76%.The relative humidity is usually given in percentage (%) that is a measure of how much watervapour the air contains compared to how much water vapour that the air can contain as amaximum at the ambient temperature. The amount of water vapour that can occur as gas formincreases with temperature. Low relative humidity is common during spring and early summer,while high relative humidity occurs during nights and during winter. In May, when the seawater is cool, the relative humidity is higher along the Swedish coast compared to inland. InNovember, when the sea water is warmer than the land, there is a reverse relationship; therelative humidity is lower on the coast compared to inland. In Helsingborg, the relative humidity is in average 50-60% when the temperature is +25 °C, butwhen the temperature is between 0 and +10 °C the humidity is much higher, 90 to 100 %

    Korttidsnederbörd i Sverige 1995 - 2008

    No full text
    Korta men intensiva regnhĂ€ndelser Ă€r mycket viktiga inom bland annat urban hydrologi dĂ„ vi hĂ€r har att göra med snabba förlopp dĂ€r avrinningen sker frĂ„n smĂ„ ytor som till stor del Ă€r hĂ„rdgjorda. Nederbördsserier med hög upplösning har dĂ€rför mycket stor betydelse för all planering, analys och dimensionering av dagvattensystem, oavsett om det Ă€r frĂ„gan om rörnĂ€t eller öppna diken. Regn med varaktighet 15 min till 96 timmar har studerats genom att analysera nederbördsdata frĂ„n SMHIs nĂ€t av automatiska vĂ€derstationer.Dessa stationer började installeras under vĂ„ren 1995 och frĂ„n början av 1996 var de flesta stationer igĂ„ng. Den period vi har studerat Ă€r maj 1995 till september 2008. 114 automatstationerna har registrerat nederbörd under nĂ„gon del av denna period. Sammanlagt finns 1211 stationsĂ„r med 15 minuters nederbörd. Data har granskats och ett mindre antal orimliga observationer har tagits bort eller rĂ€ttats. SammanstĂ€llningar av Ă„rets största regn med olika varaktigheter har gjorts. NederbördsmĂ€ngder med olika varaktighet frĂ„n 15 min till 96 timmar för olika Ă„terkomsttider har berĂ€knats med extremvĂ€rdesanalys.Den studerade perioden Ă€r för kort och antalet stationer Ă€r för fĂ„ för att bestĂ€mma regionala skillnader i Sverige av korttidsnederbörd. DĂ€rför har medelvĂ€rden av korttidsnederbörd för hela Sverige berĂ€knats. Resultat har jĂ€mförts med tidigare studier av Dahlström (2006) och Hernebring (2006). ÖverensstĂ€mmelsen Ă€r god för kortare regn och kortare Ă„terkomsttider

    Data rescue and digitization of historical wind speed observations in Sweden

    No full text
    Trabajo presentado en Swedish Climate Symposium, celebrado en Norrköping (Suecia) del 16 al 18 de mayo de 2022
    corecore