45 research outputs found

    Fluid volume modeling from sparse multi-view images by appearance transfer

    No full text

    Motion estimation with non-local total variation regularization

    No full text
    State-of-the-art motion estimation algorithms suffer from three major problems: Poorly textured regions, occlusions and small scale image structures. Based on the Gestalt principles of grouping we propose to incorporate a low level image segmentation process in order to tackle these problems. Our new motion estimation algorithm is based on non-local total variation regularization which allows us to integrate the low level image segmentation process in a unified variational framework. Numerical results on the Middlebury optical flow benchmark data set demonstrate that we can cope with the aforementioned problems. 1

    Joint motion estimation and segmentation of complex scenes with label costs and occlusion modeling

    No full text
    We propose a unified variational formulation for joint motion estimation and segmentation with explicit occlusion handling. This is done by a multi-label representation of the flow field, where each label corresponds to a parametric representation of the motion. We use a convex formulation of the multi-label Potts model with label costs and show that the asymmetric map-uniqueness criterion can be integrated into our formulation by means of convex constraints. Explicit occlusion handling eliminates errors otherwise created by the regularization. As occlusions can occur only at object boundaries, a large number of objects may be required. By using a fast primal-dual algorithm we are able to handle several hundred motion segments. Results are shown on several classical motion segmentation and optical flow examples. 1

    SVO: Semi-Direct Visual Odometry for Monocular and Multi-Camera Systems

    Full text link
    Direct methods for Visual Odometry (VO) have gained popularity due to their capability to exploit information from all intensity gradients in the image. However, low computational speed as well as missing guarantees for optimality and consistency are limiting factors of direct methods, where established feature-based methods instead succeed at. Based on these considerations, we propose a Semi-direct VO (SVO) that uses direct methods to track and triangulate pixels that are characterized by high image gradients but relies on proven feature-based methods for joint optimization of structure and motion. Together with a robust probabilistic depth estimation algorithm, this enables us to efficiently track pixels lying on weak corners and edges in environments with little or high-frequency texture. We further demonstrate that the algorithm can easily be extended to multiple cameras, to track edges, to include motion priors, and to enable the use of very large field of view cameras, such as fisheye and catadioptric ones. Experimental evaluation on benchmark datasets shows that the algorithm is significantly faster than the state of the art while achieving highly competitive accuracy
    corecore