365 research outputs found
The survival of gas clouds in the Circumgalactic Medium of Milky Way-like galaxies
Observational evidence shows that low-redshift galaxies are surrounded by
extended haloes of multiphase gas, the so-called 'circumgalactic medium' (CGM).
To study the survival of relatively cool gas (T < 10^5 K) in the CGM, we
performed a set of hydrodynamical simulations of cold (T = 10^4 K) neutral gas
clouds travelling through a hot (T = 2x10^6 K) and low-density (n = 10^-4
cm^-3) coronal medium, typical of Milky Way-like galaxies at large
galactocentric distances (~ 50-150 kpc). We explored the effects of different
initial values of relative velocity and radius of the clouds. Our simulations
were performed on a two-dimensional grid with constant mesh size (2 pc) and
they include radiative cooling, photoionization heating and thermal conduction.
We found that for large clouds (radii larger than 250 pc) the cool gas survives
for very long time (larger than 250 Myr): despite that they are partially
destroyed and fragmented into smaller cloudlets during their trajectory, the
total mass of cool gas decreases at very low rates. We found that thermal
conduction plays a significant role: its effect is to hinder formation of
hydrodynamical instabilities at the cloud-corona interface, keeping the cloud
compact and therefore more difficult to destroy. The distribution of column
densities extracted from our simulations are compatible with those observed for
low-temperature ions (e.g. SiII and SiIII) and for high-temperature ions (OVI)
once we take into account that OVI covers much more extended regions than the
cool gas and, therefore, it is more likely to be detected along a generic line
of sight.Comment: 12 pages, 10 figures. Accepted for publication in MNRA
A Budget and Accounting of Metals at z~0: Results from the COS-Halos Survey
We present a budget and accounting of metals in and around star-forming
galaxies at . We combine empirically derived star formation histories
with updated supernova and AGB yields and rates to estimate the total mass of
metals produced by galaxies with present-day stellar mass of
--. On the accounting side of the ledger, we
show that a surprisingly constant 20--25% mass fraction of produced metals
remain in galaxies' stars, interstellar gas and interstellar dust, with little
dependence of this fraction on the galaxy stellar mass (omitting those metals
immediately locked up in remnants). Thus, the bulk of metals are outside of
galaxies, produced in the progenitors of today's galaxies. The COS-Halos
survey is uniquely able to measure the mass of metals in the circumgalactic
medium (to impact parameters of kpc) of low-redshift
galaxies. Using these data, we map the distribution of CGM metals as traced by
both the highly ionized OVI ion and a suite of low-ionization species; combined
with constraints on circumgalactic dust and hotter X-ray emitting gas out to
similar impact parameters, we show that % of metals produced by
galaxies can be easily accounted for out to
150 kpc. With the current data, we cannot rule out a constant mass of metals
within this fixed physical radius. This census provides a crucial boundary
condition for the eventual fate of metals in galaxy evolution models.Comment: 19 pages, 12 figures, 2 tables. ApJ, in pres
Spectroscopy of KISS Emission-Line Galaxy Candidates. III. A Second Set of MDM Observations
Spectroscopic observations for 315 emission-line galaxy (ELG) candidates from the KPNO International Spectroscopic Survey (KISS) have been obtained using the MDM Observatory 2.4 m telescope on Kitt Peak. KISS is a wide-field objective-prism survey for extragalactic emission-line objects that has cataloged over 2200 ELG candidates to date. Spectroscopic follow-up observations are being carried out to study the characteristics of the survey objects. The observational data presented here include redshifts, reddening estimates, line equivalent widths, Hα line fluxes, and emission-line ratios. The galaxies have been classified based on their emission-line characteristics. The procedure for selecting the ELG candidates in KISS is found to be very reliable: 93% of the candidates in this sample are verified to have emission lines. A comparison of objective-prism survey data—redshifts, Hα line fluxes, and equivalent widths—to the long-slit measurements shows good overall agreement
- …