3,580 research outputs found
Neutral carbon and CO in 76 (U)LIRGs and starburst galaxy centers A method to determine molecular gas properties in luminous galaxies
We present fluxes in both neutral carbon [CI] lines at the centers of 76
galaxies with FIR luminosities between 10^{9} and 10^{12} L(o) obtained with
Herschel-SPIRE and with ground-based facilities, along with the J=7-6, J=4-3,
J=2-1 12CO and J=2-1 13CO line fluxes. We investigate whether these lines can
be used to characterize the molecular ISM of the parent galaxies in simple ways
and how the molecular gas properties define the model results. In most
starburst galaxies, the [CI]/13CO flux ratio is much higher than in Galactic
star-forming regions, and it is correlated to the total FIR luminosity. The
[CI](1-0)/CO(4-3), the [CI](2-1) (2-1)/CO(7-6), and the [CI] (2-1)/(1-0) flux
ratios are also correlated, and trace the excitation of the molecular gas. In
the most luminous infrared galaxies (LIRGs), the ISM is fully dominated by
dense and moderately warm gas clouds that appear to have low [C]/[CO] and
[13CO]/[12CO] abundances. In less luminous galaxies, emission from gas clouds
at lower densities becomes progressively more important, and a multiple-phase
analysis is required to determine consistent physical characteristics. Neither
the CO nor the [CI] velocity-integrated line fluxes are good predictors of H2
column densities in individual galaxies, and X(CI) conversion factors are not
superior to X(CO) factors. The methods and diagnostic diagrams outlined in this
paper also provide a new and relatively straightforward means of deriving the
physical characteristics of molecular gas in high-redshift galaxies up to z=5,
which are otherwise hard to determine
The excitation of near-infrared H2 emission in NGC 253
Because of its large angular size and proximity to the Milky Way, NGC 253, an
archetypal starburst galaxy, provides an excellent laboratory to study the
intricacies of this intense episode of star formation. We aim to characterize
the excitation mechanisms driving the emission in NGC 253. Specifically we aim
to distinguish between shock excitation and UV excitation as the dominant
driving mechanism, using Br\gamma, H_2 and [FeII] as diagnostic emission line
tracers. Using SINFONI observations, we create linemaps of Br\gamma,
[FeII]_{1.64}, and all detected H_2 transitions. By using symmetry arguments of
the gas and stellar gas velocity field, we find a kinematic center in agreement
with previous determinations. The ratio of the 2-1 S(1) to 1-0 S(1) H_2
transitions can be used as a diagnostic to discriminate between shock and
fluorescent excitation. Using the 1-0 S(1)/2-1 S(1) line ratio as well as
several other H_2 line ratios and the morphological comparison between H_2 and
Br\gamma and [FeII], we find that excitation from UV photons is the dominant
excitation mechanisms throughout NGC 253. We employ a diagnostic energy level
diagram to quantitatively differentiate between mechanisms. We compare the
observed energy level diagrams to PDR and shock models and find that in most
regions and over the galaxy as a whole, fluorescent excitation is the dominant
mechanism exciting the H_2 gas. We also place an upper limit of the percentage
of shock excited H_2 at 29%. We find that UV radiation is the dominant
excitation mechanism for the H_2 emission. The H_2 emission does not correlate
well with Br\gamma but closely traces the PAH emission, showing that not only
is H_2 fluorescently excited, but it is predominately excited by slightly lower
mass stars than O stars which excite Br\gamma, such as B stars
Recommended from our members
Dealing with propositional ambiguity in business process improvement
If it is true that people express their views about organisational issues in ambiguous terms then one needs to address this ambiguity instead of the ‘problems’ to find an appropriate methodological approach to resolving or dissolving problem situations in the organisation. This paper highlights and discusses those issues, which therefore relate to ambiguityin relation to decision making tasks within organisations, and the related Soft Systems Methodology / Systems Thinking school of thought, which traditionally constrains such ambiguities. A model of these issues is presented in terms of the Business Process Improvement (BPI) task to highlight these interdependencies
Probing the Interstellar Medium using HI absorption and emission towards the W3 HII region
HI spectra towards the W3 HII complex are presented and used to probe the
Galactic structure and interstellar medium conditions between us and this
region. The overall shape of the spectra is consistent with the predictions of
the Two-Arm Spiral Shock model wherein the gas found in the -40 km/s to -50
km/s range has been accelerated by some 20 km/s from its rotation curve
velocity. Spin temperatures of ~100 K are derived for the Local Arm gas, lower
than found in a previous, similar study towards DR 7. For the interarm region,
values on the order of 300 K are found, implying a negligible filling factor
for the Cold Neutral Medium (<< 1%). Some of the absorbing gas at velocities
near -40 km/s is confirmed to be associated with the HII regions.Comment: 23 pages, 6 figures, accepted for publication in the Astronomical
Journa
Molecular gas heating in Arp 299
Understanding the heating and cooling mechanisms in nearby (Ultra) luminous
infrared galaxies can give us insight into the driving mechanisms in their more
distant counterparts. Molecular emission lines play a crucial role in cooling
excited gas, and recently, with Herschel Space Observatory we have been able to
observe the rich molecular spectrum. CO is the most abundant and one of the
brightest molecules in the Herschel wavelength range. CO transitions are
observed with Herschel, and together, these lines trace the excitation of CO.
We study Arp 299, a colliding galaxy group, with one component harboring an AGN
and two more undergoing intense star formation. For Arp 299 A, we present PACS
spectrometer observations of high-J CO lines up to J=20-19 and JCMT
observations of CO and HCN to discern between UV heating and alternative
heating mechanisms. There is an immediately noticeable difference in the
spectra of Arp 299 A and Arp 299 B+C, with source A having brighter high-J CO
transitions. This is reflected in their respective spectral energy line
distributions. We find that photon-dominated regions (PDRs) are unlikely to
heat all the gas since a very extreme PDR is necessary to fit the high-J CO
lines. In addition, this extreme PDR does not fit the HCN observations, and the
dust spectral energy distribution shows that there is not enough hot dust to
match the amount expected from such an extreme PDR. Therefore, we determine
that the high-J CO and HCN transitions are heated by an additional mechanism,
namely cosmic ray heating, mechanical heating, or X-ray heating. We find that
mechanical heating, in combination with UV heating, is the only mechanism that
fits all molecular transitions. We also constrain the molecular gas mass of Arp
299 A to 3e9 Msun and find that we need 4% of the total heating to be
mechanical heating, with the rest UV heating
The influence of personal networks and social support on study attainment of students in university education
In this paper, the influence of personal networks and social support on study attainment of students in university education is examined. Furthermore, the paper aimed at clarifying the possible mediating role of achievement motivation, time spent on studying and working, procrastination and self-esteem. The study is a follow-up of the '89 cohort study, but is restricted to those students who have transferred to university education after finishing secondary education. The students have been approached with a questionnaire in 2004. Multinomial logistic regression shows that social support has no effect on study attainment, but that personal networks do have an effect on attainment. The relationship between social support and personal networks on the one hand and study progress on the other hand is not mediated by the before mentioned variables
Practical sand transport formula for non-breaking waves and currents
Open Access funded by Engineering and Physical Sciences Research Council Under a Creative Commons license Acknowledgements This work is part of the SANTOSS project (‘SANd Transport in OScillatory flows in the Sheet-flow regime’) funded by the UK's EPSRC (GR/T28089/01) and STW in The Netherlands (TCB.6586). JW acknowledges Deltares strategic research funding under project number 1202359.09. Richard Soulsby is gratefully acknowledged for valuable discussions and feedback on the formula during the SANTOSS project.Peer reviewedPostprin
New fire diurnal cycle characterizations to improve fire radiative energy assessments made from low-Earth orbit satellites sampling
Accurate near real time fire emissions estimates are required for
air quality forecasts. To date, most approaches are based on
satellite-derived estimates of fire radiative power (FRP), which can
be converted to fire radiative energy (FRE) which is directly
related to fire emissions. Uncertainties in these FRE estimations
are often substantial. This is for a large part because the most
often used low-Earth orbit satellite-based instruments like the
MODerate-resolution Imaging Spectroradiometer (MODIS) have
a relatively poor sampling of the usually pronounced fire diurnal
cycle. In this paper we explore the spatial variation of this fire
diurnal cycle and its drivers. Specifically, we assess how
representing the fire diurnal cycle affects FRP and FRE estimations
when using data collected at MODIS overpasses. Using data
assimilation we explored three different methods to estimate hourly
FRE, based on an incremental sophistication of parameterizing the
fire diurnal cycle. We sampled data from the geostationary Meteosat
Spinning Enhanced Visible and Infrared Imager (SEVIRI) at MODIS
detection opportunities to drive the three approaches. The full
SEVIRI time-series, providing full coverage of the diurnal cycle,
were used to evaluate the results. Our study period comprised three
years (2010–2012), and we focussed on Africa and the Mediterranean
basin to avoid the use of potentially lower quality SEVIRI data
obtained at very far off-nadir view angles. We found that the fire
diurnal cycle varies substantially over the study region, and
depends on both fuel and weather conditions. For example, more
"intense" fires characterized by a fire diurnal cycle with high
peak fire activity, long duration over the day, and with nighttime
fire activity are most common in areas of large fire size (i.e.,
large burned area per fire event). These areas are most prevalent in
relatively arid regions. Ignoring the fire diurnal cycle as done
currently in some approaches caused structural errors, while
generally overestimating FRE. Including information on the
climatology of the fire diurnal cycle provided the most promising avenue
to improve FRE estimations. This approach also improved the
performance on relatively high spatiotemporal resolutions, although
only when aggregating model results to coarser spatial and/or
temporal scale good correlation was found with the full SEVIRI
hourly reference dataset. In general model performance was best in
areas of frequent fire and low errors of omission. We recommend the use
of regionally varying fire diurnal cycle information within the
Global Fire Assimilation System (GFAS) used in the Copernicus
Atmosphere Monitoring Services, which will improve FRE estimates and
may allow for further reconciliation of biomass burning emission
estimates from different inventories
Learning Hybrid Process Models From Events: Process Discovery Without Faking Confidence
Process discovery techniques return process models that are either formal
(precisely describing the possible behaviors) or informal (merely a "picture"
not allowing for any form of formal reasoning). Formal models are able to
classify traces (i.e., sequences of events) as fitting or non-fitting. Most
process mining approaches described in the literature produce such models. This
is in stark contrast with the over 25 available commercial process mining tools
that only discover informal process models that remain deliberately vague on
the precise set of possible traces. There are two main reasons why vendors
resort to such models: scalability and simplicity. In this paper, we propose to
combine the best of both worlds: discovering hybrid process models that have
formal and informal elements. As a proof of concept we present a discovery
technique based on hybrid Petri nets. These models allow for formal reasoning,
but also reveal information that cannot be captured in mainstream formal
models. A novel discovery algorithm returning hybrid Petri nets has been
implemented in ProM and has been applied to several real-life event logs. The
results clearly demonstrate the advantages of remaining "vague" when there is
not enough "evidence" in the data or standard modeling constructs do not "fit".
Moreover, the approach is scalable enough to be incorporated in
industrial-strength process mining tools.Comment: 25 pages, 12 figure
- …