13 research outputs found

    The Optimal Effective Concentration Combination (OPECC) as a Novel Method for Evaluating the Effects of Binary Application of Antibacterial Compounds

    Get PDF
    Combination therapies appear to be beneficial for preventing bacterial resistance to antibacterial approaches. The aim of this study was to define and determine an optimal effective concentration combination (OPECC) for binary application of antibacterial compounds. The antiseptics chlorhexidine (CHX), benzalkonium chloride (BAC), and cetylpyridinium chloride (CPC), as well as the antibiotic ciprofloxacin (CIP), were tested against planktonic Escherichia coli in binary combinations by applying a checkerboard assay, and then evaluated according to the established synergism principles. Extending the checkerboard method, the optical density (OD) of the wells was measured photometrically. On the borderline between effective (OD = 0) and non-effective (OD > 0) eradication of the bacterial cultures, the OPECC was determined. Binary combinations of CPC or CHX with BAC were assessed as either synergistic or indifferent, respectively, while there was no OPECC to calculate. For all other binary combinations, an OPECC was derivable, and these were assessed as either synergistic or indifferent. In conclusion, the evaluation of the binary combination application of antibacterial compounds based on the checkerboard method was refined to such an extent that it was possible to determine at least one concentration pair that could be defined and considered as an OPECC, independently of the evaluation of the system according to the different synergy principles. In general, the method presented herein for determining an OPECC can be applied to any conceivable method or system aimed at the eradication of a pathogen
    corecore