84 research outputs found
Recommended from our members
Performance of positive pressure fan-pad cooling system and cooling load model for Chinese solar greenhouse
Year-round and efficient production for crop products of high yield, quality and cleanliness is the development trend of the Chinese solar greenhouse (CSG). However, this is limited by unfavorable climate conditions inside the CSG, such as high air temperature in warm seasons. The fan-pad cooling system, normally adopting negative pressure ventilation, has been widely used for greenhouse cultivation. But it generates a large air temperature gradient in greenhouse, limits the greenhouse dimensions. Above deficiencies are more serious in the CSG. Because CSG always has a long distance between the sidewalls, fans and gaskets are installed separately on the sidewalls. In order to overcome the limitations of negative fan-pad cooling system and improve ability of the CSG in coping with high temperature, a positive pressure fan-pad cooling system (PPFPCS) was designed in this study. By using this system, the cold and humid air enters the CSG from bottom of south roof, and then hot air leaves the CSG through roof vents. Performance of the PPFPCS was tested in a CSG without crops in Beijing area during summer. Results showed that in typical summer hot days, the PPFPCS cooperating with external shading net could decrease mean air temperature of the CSG experimental area to 30.7-33.4 ℃, which was lower than that in the CSG contrast area using natural ventilation combination with external shading net by 5.4-11.1 ℃. Air temperature of the CSG experimental area was also lower than that outside the CSG with a temperature difference of 2.4-5.4 ℃. Nevertheless, both natural and mechanical ventilations were tested to have limited cooling capacity to meet climate requirement for CSG cultivation. The PPFPCS could also decrease the CSG air temperature at night, but had a poorer performance in comparison with daytime cooling due to the smaller vapor pressure deficit (VPD). The contrast area of CSG encountered an extreme low air humidity state with mean VPD of 3.4-6.1 kPa. PPFPCS could effectively alleviate low humidity stress: the average relative humidity in CSG experimental area was between 49.8% and 62.3%, which was 13.6% - 21.2% higher than that in CSG control area and 13.6%-24.6% higher than that in outdoor area. Wind velocity inside the CSG experimental area ranged from 0.35 to 1 m/s, which indicated a relative uniform air flow distribution. Cooling efficiency of the PPFPCS was about 91%, which was over 10 percentage points higher than that of the traditional negative pressure fan-pad cooling system. Low temperature of the PPFPCS circling water contributed to the high cooling efficiency. Average water consumption rate of the PPFPCS used for CSG cooling was 0.035-0.079 g/(m2·s) during the test. It had a positive linear correlation with VPD of outdoor air, that is drier outdoor air anticipates larger water consumption and better cooling performance. Both cooling load model of the CSG and selection method for fan-pad cooling system were derived. Cooling load model is the basis for capacity calculation of cooling equipment to be installed. Cooling load of the CSG in summer was 299.1 W/m2. Contribution ratios of convective heat transfer between north wall and indoor air, convective heat transfer between greenhouse floor with indoor air, hot air infiltration, as well as heat transfer between indoor and outdoor air though south roof, north roof and side walls were 11.0%, 73.3%, 1.3% and 14.4%, respectively. The maximum specific ventilation rate of the PPFPCS used for CSG cooling was recommended to be 0.067 m/s. This study can provide technical support for the application of PPFPCS in CSG cultivation and provide theoretical basis for the climate control of CSG production in summer.
摘 要:负压湿帘风机降温被广泛应用于温室生产中,但存在降温均匀性差、限制温室长度及对温室密闭性要求高等不
足。为克服负压湿帘风机降温的局限性,提高日光温室降温能力,该研究设计了日光温室正压湿帘冷风降温系统,其气
流组织方式为湿冷空气从南屋面底部进入日光温室,热空气由顶开窗排出室外。在北京地区无作物的日光温室对系统夏
季降温增湿效果及性能进行试验,试验结果表明:在典型夏季高温白天,正压湿帘冷风降温系统配合遮阳网可将日光温
室试验区内平均气温控制在 30.7~33.4 ℃,比采用自然通风配合遮阳网的对照区低 5.4~11.1 ℃,比室外低 2.4~5.4 ℃,
降温效果良好;夜间系统对温室降温幅度减小。该系统可有效缓解低湿胁迫,日光温室试验区空气平均相对湿度为49.8%~
62.3%,比对照区及室外分别高 13.6%~21.2%和 13.6%~24.6%。室内风速 0.35~1 m/s,气流分布差异性较小。试验条件
下,正压湿帘冷风降温系统的平均降温效率为91%,比传统的负压湿帘风机高10个百分点以上;实际平均耗水量为0.035~
0.079 g/(m2
·s),且耗水量与室外空气水蒸气饱和压差(VPD,vapor pressure deficit)呈正相关(P<0.01,r=0.64)。同时,
研究构建了日光温室冷负荷计算模型及湿帘冷风降温设备合理选型方法,其中冷负荷模型是降温设备选型的基础,普遍
适用于各种日光温室降温方法的研究。计算得到日光温室夏季降温冷负荷为 299.1 W/m2,应安装的正压湿帘冷风降温系
统最大比通风量为 0.067 m/s。该研究为日光温室正压湿帘冷风降温方法的工程应用提供了技术参考,为日光温室安全越
夏生产环境控制提供了理论基础。
关键词:温室;温度;模型;日光温室;正压通风;湿帘风机;降温;冷负
Ripple Texturing of Suspended Graphene Atomic Membranes
Graphene is the nature's thinnest elastic membrane, with exceptional
mechanical and electrical properties. We report the direct observation and
creation of one-dimensional (1D) and 2D periodic ripples in suspended graphene
sheets, using spontaneously and thermally induced longitudinal strains on
patterned substrates, with control over their orientations and wavelengths. We
also provide the first measurement of graphene's thermal expansion coefficient,
which is anomalously large and negative, ~ -7x10^-6 K^-1 at 300K. Our work
enables novel strain-based engineering of graphene devices.Comment: 15 pages, 4 figure
Infrared nanoscopy of Dirac plasmons at the graphene-SiO2 interface
We report on infrared (IR) nanoscopy of 2D plasmon excitations of Dirac
fermions in graphene. This is achieved by confining mid-IR radiation at the
apex of a nanoscale tip: an approach yielding two orders of magnitude increase
in the value of in-plane component of incident wavevector q compared to free
space propagation. At these high wavevectors, the Dirac plasmon is found to
dramatically enhance the near-field interaction with mid-IR surface phonons of
SiO2 substrate. Our data augmented by detailed modeling establish graphene as a
new medium supporting plasmonic effects that can be controlled by gate voltage.Comment: 12 pages, 4 figure
Lithography-free Fabrication of High Quality Substrate-supported and Freestanding Graphene devices
We present a lithography-free technique for fabrication of clean, high
quality graphene devices. This technique is based on evaporation through hard
Si shadow masks, and eliminates contaminants introduced by lithographical
processes. We demonstrate that devices fabricated by this technique have
significantly higher mobility values than those by standard electron beam
lithography. To obtain ultra-high mobility devices, we extend this technique to
fabricate suspended graphene samples with mobility as high as 120,000 cm^2/Vs
Aryl Functionalization as a Route to Band Gap Engineering in Single Layer Graphene Devices
Chemical functionalization is a promising route to band gap engineering of
graphene. We chemically grafted nitrophenyl groups onto exfoliated single-layer
graphene sheets in the form of substrate-supported or free-standing films. Our
transport measurements demonstrate that non-suspended functionalized graphene
behaves as a granular metal, with variable range hopping transport and a
mobility gap ~ 0.1 eV at low temperature. For suspended graphene that allows
functionalization on both surfaces, we demonstrate tuning of its electronic
properties from a granular metal to a gapped semiconductor, in which charge
transport occurs via thermal activation over a gap ~ 80 meV. This non-invasive
and scalable functionalization technique paves the way for CMOS-compatible band
gap engineering of graphene electronic devices
Single-feature polymorphism discovery by computing probe affinity shape powers
<p>Abstract</p> <p>Background</p> <p>Single-feature polymorphism (SFP) discovery is a rapid and cost-effective approach to identify DNA polymorphisms. However, high false positive rates and/or low sensitivity are prevalent in previously described SFP detection methods. This work presents a new computing method for SFP discovery.</p> <p>Results</p> <p>The probe affinity differences and affinity shape powers formed by the neighboring probes in each probe set were computed into SFP weight scores. This method was validated by known sequence information and was comprehensively compared with previously-reported methods using the same datasets. A web application using this algorithm has been implemented for SFP detection. Using this method, we identified 364 SFPs in a barley near-isogenic line pair carrying either the wild type or the mutant <it>uniculm2 </it>(<it>cul2</it>) allele. Most of the SFP polymorphisms were identified on chromosome 6H in the vicinity of the <it>Cul2 </it>locus.</p> <p>Conclusion</p> <p>This SFP discovery method exhibits better performance in specificity and sensitivity over previously-reported methods. It can be used for other organisms for which GeneChip technology is available. The web-based tool will facilitate SFP discovery. The 364 SFPs discovered in a barley near-isogenic line pair provide a set of genetic markers for fine mapping and future map-based cloning of the <it>Cul2 </it>locus.</p
SUMOylation Represses Nanog Expression via Modulating Transcription Factors Oct4 and Sox2
Nanog is a pivotal transcription factor in embryonic stem (ES) cells and is essential for maintaining the pluripotency and self-renewal of ES cells. SUMOylation has been proved to regulate several stem cell markers' function, such as Oct4 and Sox2. Nanog is strictly regulated by Oct4/Sox2 heterodimer. However, the direct effects of SUMOylation on Nanog expression remain unclear. In this study, we reported that SUMOylation repressed Nanog expression. Depletion of Sumo1 or its conjugating enzyme Ubc9 increased the expression of Nanog, while high SUMOylation reduced its expression. Interestingly, we found that SUMOylation of Oct4 and Sox2 regulated Nanog in an opposing manner. SUMOylation of Oct4 enhanced Nanog expression, while SUMOylated Sox2 inhibited its expression. Moreover, SUMOylation of Oct4 by Pias2 or Sox2 by Pias3 impaired the interaction between Oct4 and Sox2. Taken together, these results indicate that SUMOylation has a negative effect on Nanog expression and provides new insights into the mechanism of SUMO modification involved in ES cells regulation
Cell Origin of Human Mesenchymal Stem Cells Determines a Different Healing Performance in Cardiac Regeneration
The possible different therapeutic efficacy of human mesenchymal stem cells (hMSC) derived from umbilical cord blood (CB), adipose tissue (AT) or bone marrow (BM) for the treatment of myocardial infarction (MI) remains unexplored. This study was to assess the regenerative potential of hMSC from different origins and to evaluate the role of CD105 in cardiac regeneration. Male SCID mice underwent LAD-ligation and received the respective cell type (400.000/per animal) intramyocardially. Six weeks post infarction, cardiac catheterization showed significant preservation of left ventricular functions in BM and CD105+-CB treated groups compared to CB and nontreated MI group (MI-C). Cell survival analyzed by quantitative real time PCR for human GAPDH and capillary density measured by immunostaining showed consistent results. Furthermore, cardiac remodeling can be significantly attenuated by BM-hMSC compared to MI-C. Under hypoxic conditions in vitro, remarkably increased extracellular acidification and apoptosis has been detected from CB-hMSC compared to BM and CD105 purified CB-derived hMSC. Our findings suggests that hMSC originating from different sources showed a different healing performance in cardiac regeneration and CD105+ hMSC exhibited a favorable survival pattern in infarcted hearts, which translates into a more robust preservation of cardiac function
Histological and transcriptome-wide level characteristics of fetal myofiber hyperplasia during the second half of gestation in Texel and Ujumqin sheep
<p>Abstract</p> <p>Background</p> <p>Whether myofibers increase with a pulsed-wave mode at particular developmental stages or whether they augment evenly across developmental stages in large mammals is unclear. Additionally, the molecular mechanisms of myostatin in myofiber hyperplasia at the fetal stage in sheep remain unknown. Using the first specialized transcriptome-wide sheep oligo DNA microarray and histological methods, we investigated the gene expression profile and histological characteristics of developing fetal ovine longissimus muscle in Texel sheep (high muscle and low fat), as a myostatin model of natural mutation, and Ujumqin sheep (low muscle and high fat). Fetal skeletal muscles were sampled at 70, 85, 100, 120, and 135 d of gestation.</p> <p>Results</p> <p>Myofiber number increased sharply with a pulsed-wave mode at certain developmental stages but was not augmented evenly across developmental stages in fetal sheep. The surges in myofiber hyperplasia occurred at 85 and 120 d in Texel sheep, whereas a unique proliferative surge appeared at 100 d in Ujumqin sheep. Analysis of the microarray demonstrated that immune and hematological systems' development and function, lipid metabolism, and cell communication were the biological functions that were most differentially expressed between Texel and Ujumqin sheep during muscle development. Pathways associated with myogenesis and the proliferation of myoblasts, such as calcium signaling, chemokine (C-X-C motif) receptor 4 signaling, and vascular endothelial growth factor signaling, were affected significantly at specific fetal stages, which underpinned fetal myofiber hyperplasia and postnatal muscle hypertrophy. Moreover, we identified some differentially expressed genes between the two breeds that could be potential myostatin targets for further investigation.</p> <p>Conclusions</p> <p>Proliferation of myofibers proceeded in a pulsed-wave mode at particular fetal stages in the sheep. The myostatin mutation changed the gene expression pattern in skeletal muscle at a transcriptome-wide level, resulting in variation in myofiber phenotype between Texel and Ujumqin sheep during the second half of gestation. Our findings provide a novel and dynamic description of the effect of myostatin on skeletal muscle development, which contributes to understanding the biology of muscle development in large mammals.</p
- …