2 research outputs found

    Complete chloroplast genome of an invasive marine macroalga Ulva californica (Ulvophyceae, Chlorophyta)

    No full text
    Species belonging to Ulva (Ulvophyceae, Chlorophyta) are one of the major members of invasive seaweeds. Ulva californica Wille 1899 was originally believed to be native to the Pacific coast of North America, while in recent years it has been reported as exotic species, or new record, in Europe, the Mediterranean, Asia, and Oceania. However, the paths of global dispersal of U. californica are unclear. In addition, the species boundary between U. californica and a related species is somewhat disputed. Here, we reported that the complete chloroplast genome of U. californica is 92,126 bp in size, harboring 96 genes (GenBank accession no. MZ561475). The overall base composition was A (37.9%), T (37.4%), C (12.3%), and G (12.4%), similar to those from other Ulva species. The phylogenomic analysis showed that although U. californica was genetically closer to Ulva aragoënsis (Bliding) Maggs 2018 in [Krupnik N et al., 2018], they were clearly distinguishable, supporting the recent opinion that they should be separated into different species. The chloroplast genome data of U. californica would provide plenty resources for phylogeography analysis and monitor on bioinvasion

    Multiple-Penalty-Weighted Regularization Inversion for Dynamic Light Scattering

    No full text
    By using different weights to deal with the autocorrelation function data of every delay time period, the information utilization of dynamic light scattering can be obviously enhanced in the information-weighted constrained regularization inversion, but the denoising ability and the peak resolution under noise conditions for information-weighted inversion algorithm are still insufficient. On the basis of information weighting, we added a penalty term with the function of flatness constraints to the objective function of the regularization inversion, and performed the inversion of multiangle dynamic light scattering data, including the simulated data of bimodal distribution particles (466/915 nm, 316/470 nm) and trimodal distribution particles (324/601/871 nm), and the measured data of bimodal distribution particles (306/974 nm, 300/502 nm). The results of the inversion show that multiple-penalty-weighted regularization inversion can not only improve the utilization of the particle size information, but also effectively eliminate the false peaks and burrs in the inversed particle size distributions, and further improve the resolution of peaks in the noise conditions, and then improve the weighting effects of the information-weighted inversion
    corecore