56 research outputs found

    Movable-Antenna Enhanced Multiuser Communication via Antenna Position Optimization

    Full text link
    Movable antenna (MA) is a promising technology to improve wireless communication performance by varying the antenna position in a given finite area at the transceivers to create more favorable channel conditions. In this paper, we investigate the MA-enhanced multiple-access channel (MAC) for the uplink transmission from multiple users each equipped with a single MA to a base station (BS) with a fixed-position antenna (FPA) array. A field-response based channel model is used to characterize the multi-path channel between the antenna array of the BS and each user's MA with a flexible position. To evaluate the MAC performance gain provided by MAs, we formulate an optimization problem for minimizing the total transmit power of users, subject to a minimum-achievable-rate requirement for each user, where the positions of MAs and the transmit powers of users, as well as the receive combining matrix at the BS are jointly optimized. To solve this non-convex optimization problem involving intricately coupled variables, we develop two algorithms based on zero-forcing (ZF) and minimum mean square error (MMSE) combining methods, respectively. Specifically, for each algorithm, the combining matrix of the BS and the total transmit power of users are expressed as a function of the MAs' position vectors, which are then optimized by using the gradient descent method in an iterative manner. It is shown that the proposed ZF-based and MMSE-based algorithms can converge to high-quality suboptimal solutions with low computational complexities. Simulation results demonstrate that the proposed solutions for MA-enhanced multiple access systems can significantly decrease the total transmit power of users as compared to conventional FPA systems under both perfect and imperfect field-response information.Comment: Submitted to IEEE Transactions on Wireless Communication

    The role of connectivity in significant bandgap narrowing for fused-pyrene based non-fullerene acceptors toward high-efficiency organic solar cells

    Get PDF
    Great attention has been paid to developing low bandgap non-fullerene acceptors (NFAs) for matching wide bandgap donor polymers to increase the photocurrent and therefore the power conversion efficiencies (PCEs) of NFA organic solar cells, while pyrene-core based acceptor-donor-acceptor (A-D-A) NFAs have been mainly reported via the 2,9-position connection due to their bisthieno[3′,2′-b']thienyl[a,h]pyrene fused via a five-membered ring bridge at the ortho-position of pyrene as the representative one named FPIC5, which has prohibited further narrowing their energy gap. Herein, an acceptor FPIC6 was exploited by creating the 1,8-position connection through fusing as bisthieno[3′,2′-b′]thienyl[f-g,m-n]pyrene linked at the bay-position via a six-membered bridge, with enhanced push-pull characteristics within such A-D-A structure. As a structural isomer of FPIC5, FPIC6 exhibited a much lower bandgap of 1.42 eV (1.63 eV for FPIC5). Therefore, the photocurrent and PCE of PTB7-Th:FPIC6 cells were improved to 21.50 mA cm-2 and 11.55%, respectively, due to the balanced mobilities, better photoluminescence quenching efficiency and optimized morphology, which are both ∼40% better than those of PTB7-Th:FPIC5 cells. Our results clearly proved that a pyrene fused core with 1,8-position connection with electron-withdrawing end groups instead of 2,9-position connection is an efficient molecular design strategy to narrow the optical bandgap and improve the photovoltaic performance of NFA based OSCs

    Age-specific reference values for low psoas muscle index at the L3 vertebra level in healthy populations: A multicenter study

    Get PDF
    Background and aimsThe progressive and generalized loss of skeletal muscle mass, strength and physical function is defined as sarcopenia. Sarcopenia is closely related to the prognosis of patients. Accurate diagnosis and adequate management of sarcopenia are crucial. The psoas muscle mass index taken at the third lumbar vertebra (L3-PMI, cm2/m2) is one of the established methods for evaluating skeletal muscle mass. However, the cutoff values of L3-PMI for diagnosis of sarcopenia are not yet to be clarified in Asian populations. We attempted to establish reference values for low L3-PMI that would be suitable for defining sarcopenia in the Northern Chinese population.MethodsThis was a retrospective, multicenter cross-sectional study. A search of abdominal CT imaging reports was conducted in four representative cities in northern China. Transverse CT images were measured using the analysis software Slice-O-Matic. Low psoas muscle index was defined as the 5th percentile or mean-2SD of the study group.Results1,787 healthy individuals in the study were grouped by age. The sex and number of people in each group were similar. L3-PMI had a negative linear correlation with age, and a strong correlation with the skeletal muscle index taken at the third lumbar vertebrae (L3-SMI, cm2/m2). The L3-PMI reference values in males were 5.41 cm2/m2 for 20–29 years, 4.71 cm2/m2 for 30–39 years, 4.65 cm2/m2 for 40–49 years, 4.10 cm2/m2 for 50–59 years and 3.68 cm2/m2 for over 60 years by using 5th percentile threshold. Similarly, the reference values in females were 3.32, 3.40, 3.18, 2.91, and 2.62 cm2/m2. When using mean-2SD as the reference, the values for each age group were 4.57, 4.16, 4.03, 3.37, and 2.87 cm2/m2 for males and 2.79, 2.70, 2.50, 2.30, and 2.26 cm2/m2 for females, respectively.ConclusionWe defined the reference values of age-specific low skeletal muscle mass when simply evaluated by L3-PMI. Further studies about the association of sarcopenia using these reference values with certain clinical outcomes or diseases are needed

    Crowded environments tune the fold-switching in metamorphic proteins

    Full text link
    Abstract Metamorphic proteins such as circadian clock protein KaiB and human chemokine XCL1 play vital roles in regulating biological processes, including gene expression, circadian clock and innate immune responses, and perform distinct functions in living cell by switching different structures in response to cellular environment stimuli. However, it is unclear how complex and crowded intracellular environments affect conformational rearrangement of metamorphic proteins. Here, the kinetics and thermodynamics of two well-characterized metamorphic proteins, circadian clock protein KaiB and human chemokine XCL1, were quantified in physiologically relevant environments by using NMR spectroscopy, indicating that crowded agents shift equilibrium towards the inactive form (ground-state KaiB and Ltn10-like state XCL1) without disturbing the corresponding structures, and crowded agents have predominantly impact on the exchange rate of XCL1 that switches folds on timescales of seconds, but have slightly impact on the exchange rate of KaiB that switches folds on timescales of hours. Our data shed light on how metamorphic proteins can respond immediately to the changed crowded intracellular conditions that induced by environmental cues and then execute different functions in living cell, and it also enhances our understanding of how environments enrich the sequence-structure-function paradigm

    Novel Amphiphilic, Biodegradable, Biocompatible, Thermo-Responsive ABA Triblock Copolymers Based on PCL and PEG Analogues via a Combination of ROP and RAFT: Synthesis, Characterization, and Sustained Drug Release from Self-Assembled Micelles

    Full text link
    Well-defined novel, linear, biodegradable, amphiphilic thermo-responsive ABA-type triblock copolymers, poly[2-(2-methoxyethoxy) ethyl methacrylate-co-oligo(ethylene glycol) methacrylate]-b-poly(ε-caprolactone)-b-poly[2-(2-methoxyethoxy) ethyl methacrylate-co-oligo(ethylene glycol) methacrylate] [P(MEO2MA-co-OEGMA)-b-PCL-b-P(MEO2MA-co-OEGMA)] (tBPs), were synthesized via a combination of ring-opening polymerization (ROP) of ε-caprolactone (εCL) and reversible addition-fragmentation chain transfer polymerization (RAFT) of MEO2MA and OEGMA comonomers. The chemical structures and compositions of these copolymers were characterized using Fourier transform infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance (1H NMR). The molecular weights of the copolymers were obtained using gel permeation chromatography (GPC) measurements. Thermo-responsive micelles were obtained by self-assembly of copolymers in aqueous medium. The temperature sensitivity and micelllization behavior of amphiphilic triblock copolymers solutions were studied by transmittance, fluorescence probe, surface tension, dynamic light scattering (DLS) and transmission electron microscopy (TEM). A hydrophobic drug, anethole, was encapsulated in micelles by using the dialysis method. The average particle sizes of drug-loaded micelles were determined by dynamic light scattering measurement. In vitro, the sustained release of the anethole was performed in pH 7.4 phosphate-buffered saline (PBS) at different temperatures. Results showed that the triblock copolymer’s micelles were quite effective in the encapsulation and controlled release of anethole. The vial inversion test demonstrated that the triblock copolymers could trigger the sol-gel transition which also depended on the temperature, and its sol-gel transition temperature gradually decreased with increasing concentration. The hydrogel system could also be used as a carrier of hydrophobic drugs in medicine

    Synthesis of Novel Temperature- and pH-Sensitive ABA Triblock Copolymers P(DEAEMA-co-MEO2MA-co-OEGMA)-b-PEG-b-P(DEAEMA-co-MEO2MA-co-OEGMA): Micellization, Sol–Gel Transitions, and Sustained BSA Release

    Full text link
    Novel temperature- and pH-responsive ABA-type triblock copolymers, P(DEAEMA-co-MEO2MA-co-OEGMA)-b-PEG-b-P(DEAEMA-co-MEO2MA-co-OEGMA), composed of a poly(ethylene glycol) (PEG) middle block and temperature- and pH-sensitive outer blocks, were synthesized by atom transfer radical polymerization (ATRP). The composition and structure of the copolymer were characterized by 1H NMR and gel permeation chromatography (GPC). The temperature- and pH-sensitivity, micellization, and the sol–gel transitions of the triblock copolymers in aqueous solutions were studied using transmittance measurements, surface tension, viscosity, fluorescence probe technique, dynamic light scattering (DLS), zeta-potential measurements, and transmission electron microscopy (TEM). The lower critical solution temperature (LCST) of the triblock copolymer, which contains a small amount of a weak base group, (N,N-diethylamino) ethyl methacrylate (DEAEMA), can be tuned precisely and reversibly by changing the solution pH. When the copolymer concentration was sufficiently high, increasing temperature resulted in the free-flowing solution transformation into a micellar gel. The sol-to-gel transition temperature (Tsol–gel) in aqueous solution will continue to decrease as solution concentration increases

    Sustained Delivery of the Antiviral Protein Griffithsin and Its Adhesion to a Biological Surface by a Silk Fibroin Scaffold

    Get PDF
    The protein Griffithsin (Grft) is a lectin that tightly binds to high-mannose glycosylation sites on viral surfaces. This property allows Grft to potently inhibit many viruses, including HIV-1. The major route of HIV infection is through sexual activity, so an important tool for reducing the risk of infection would be a film that could be inserted vaginally or rectally to inhibit transmission of the virus. We have previously shown that silk fibroin can encapsulate, stabilize, and release various antiviral proteins, including Grft. However, for broad utility as a prevention method, it would be useful for an insertable film to adhere to the mucosal surface so that it remains for several days or weeks to provide longer-term protection from infection. We show here that silk fibroin can be formulated with adhesive properties using the nontoxic polymer hydroxypropyl methylcellulose (HPMC) and glycerol, and that the resulting silk scaffold can both adhere to biological surfaces and release Grft over the course of at least one week. This work advances the possible use of silk fibroin as an anti-viral insertable device to prevent infection by sexually transmitted viruses, including HIV-1
    • …
    corecore