93 research outputs found

    Modeling and simulation of sintering process across scales

    Full text link
    Sintering, as a thermal process at elevated temperature below the melting point, is widely used to bond contacting particles into engineering products such as ceramics, metals, polymers, and cemented carbides. Modelling and simulation as important complement to experiments are essential for understanding the sintering mechanisms and for the optimization and design of sintering process. We share in this article a state-to-the-art review on the major methods and models for the simulation of sintering process at various length scales. It starts with molecular dynamics simulations deciphering atomistic diffusion process, and then moves to microstructure-level approaches such as discrete element method, Monte--Carlo method, and phase-field models, which can reveal subtle mechanisms like grain coalescence, grain rotation, densification, grain coarsening, etc. Phenomenological/empirical models on the macroscopic scales for estimating densification, porosity and average grain size are also summarized. The features, merits, drawbacks, and applicability of these models and simulation technologies are expounded. In particular, the latest progress on the modelling and simulation of selective and direct-metal laser sintering based additive manufacturing is also reviewed. Finally, a summary and concluding remarks on the challenges and opportunities are given for the modelling and simulations of sintering process.Comment: 45 pages, 38 figure

    The cosmic ray test of MRPCs for the BESIII ETOF upgrade

    Full text link
    In order to improve the particle identification capability of the Beijing Spectrometer III (BESIII),t is proposed to upgrade the current endcap time-of-flight (ETOF) detector with multi-gap resistive plate chamber (MRPC) technology. Aiming at extending ETOF overall time resolution better than 100ps, the whole system including MRPC detectors, new-designed Front End Electronics (FEE), CLOCK module, fast control boards and time to digital modules (TDIG), was built up and operated online 3 months under the cosmic ray. The main purposes of cosmic ray test are checking the detectors' construction quality, testing the joint operation of all instruments and guaranteeing the performance of the system. The results imply MRPC time resolution better than 100psps, efficiency is about 98%\% and the noise rate of strip is lower than 1Hz/Hz/(scm2scm^{2}) at normal threshold range, the details are discussed and analyzed specifically in this paper. The test indicates that the whole ETOF system would work well and satisfy the requirements of upgrade

    Seizing the window of opportunity to mitigate the impact of climate change on the health of Chinese residents

    Get PDF
    The health threats posed by climate change in China are increasing rapidly. Each province faces different health risks. Without a timely and adequate response, climate change will impact lives and livelihoods at an accelerated rate and even prevent the achievement of the Healthy and Beautiful China initiatives. The 2021 China Report of the Lancet Countdown on Health and Climate Change is the first annual update of China’s Report of the Lancet Countdown. It comprehensively assesses the impact of climate change on the health of Chinese households and the measures China has taken. Invited by the Lancet committee, Tsinghua University led the writing of the report and cooperated with 25 relevant institutions in and outside of China. The report includes 25 indicators within five major areas (climate change impacts, exposures, and vulnerability; adaptation, planning, and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement) and a policy brief. This 2021 China policy brief contains the most urgent and relevant indicators focusing on provincial data: The increasing health risks of climate change in China; mixed progress in responding to climate change. In 2020, the heatwave exposures per person in China increased by 4.51 d compared with the 1986–2005 average, resulting in an estimated 92% increase in heatwave-related deaths. The resulting economic cost of the estimated 14500 heatwave-related deaths in 2020 is US$176 million. Increased temperatures also caused a potential 31.5 billion h in lost work time in 2020, which is equivalent to 1.3% of the work hours of the total national workforce, with resulting economic losses estimated at 1.4% of China’s annual gross domestic product. For adaptation efforts, there has been steady progress in local adaptation planning and assessment in 2020, urban green space growth in 2020, and health emergency management in 2019. 12 of 30 provinces reported that they have completed, or were developing, provincial health adaptation plans. Urban green space, which is an important heat adaptation measure, has increased in 18 of 31 provinces in the past decade, and the capacity of China’s health emergency management increased in almost all provinces from 2018 to 2019. As a result of China’s persistent efforts to clean its energy structure and control air pollution, the premature deaths due to exposure to ambient particulate matter of 2.5 μm or less (PM2.5) and the resulting costs continue to decline. However, 98% of China’s cities still have annual average PM2.5 concentrations that are more than the WHO guideline standard of 10 μg/m3. It provides policymakers and the public with up-to-date information on China’s response to climate change and improvements in health outcomes and makes the following policy recommendations. (1) Promote systematic thinking in the related departments and strengthen multi-departmental cooperation. Sectors related to climate and development in China should incorporate health perspectives into their policymaking and actions, demonstrating WHO’s and President Xi Jinping’s so-called health-in-all-policies principle. (2) Include clear goals and timelines for climate-related health impact assessments and health adaptation plans at both the national and the regional levels in the National Climate Change Adaptation Strategy for 2035. (3) Strengthen China’s climate mitigation actions and ensure that health is included in China’s pathway to carbon neutrality. By promoting investments in zero-carbon technologies and reducing fossil fuel subsidies, the current rebounding trend in carbon emissions will be reversed and lead to a healthy, low-carbon future. (4) Increase awareness of the linkages between climate change and health at all levels. Health professionals, the academic community, and traditional and new media should raise the awareness of the public and policymakers on the important linkages between climate change and health.</p

    Research Progress on Neural Circuit Mechanisms of Depression

    No full text
    Depression is one of the most prevailing neurological and psychotic disorders with a high rate of mental disability. The depression is closely related to the abnormality of neural circuits in brain. As a result, it is of great significance to make a profound study of the neural circuit of depression for revealing new clinical therapies of depression. Currently, neural circuits about depression have not been fully understood and there are still many difficulties puzzling researchers. While with the processing effort of neuroscientists and the development of electrophysiology, epigenetics or neuroimmunology, great progresses have been made in studies about neuronal circuits in depression to some extent. In this paper, we discuss various brain areas those are related to depression including the ventral tegmental area (VTA), nucleus accumbens (NAc) and dorsal raphe nucleus (DRN), and then put emphasis on their local function with different neurotransmitters and abnormality of neural circuits of depression by reviewing previous studies. In a way, figuring out the mechanism of depression can improve the cure rate, and reduce the economic loss due to depression around the world

    Identification of residue pairing in interacting β-strands from a predicted residue contact map

    No full text
    Abstract Background Despite the rapid progress of protein residue contact prediction, predicted residue contact maps frequently contain many errors. However, information of residue pairing in β strands could be extracted from a noisy contact map, due to the presence of characteristic contact patterns in β-β interactions. This information may benefit the tertiary structure prediction of mainly β proteins. In this work, we propose a novel ridge-detection-based β-β contact predictor to identify residue pairing in β strands from any predicted residue contact map. Results Our algorithm RDb2C adopts ridge detection, a well-developed technique in computer image processing, to capture consecutive residue contacts, and then utilizes a novel multi-stage random forest framework to integrate the ridge information and additional features for prediction. Starting from the predicted contact map of CCMpred, RDb2C remarkably outperforms all state-of-the-art methods on two conventional test sets of β proteins (BetaSheet916 and BetaSheet1452), and achieves F1-scores of ~ 62% and ~ 76% at the residue level and strand level, respectively. Taking the prediction of the more advanced RaptorX-Contact as input, RDb2C achieves impressively higher performance, with F1-scores reaching ~ 76% and ~ 86% at the residue level and strand level, respectively. In a test of structural modeling using the top 1 L predicted contacts as constraints, for 61 mainly β proteins, the average TM-score achieves 0.442 when using the raw RaptorX-Contact prediction, but increases to 0.506 when using the improved prediction by RDb2C. Conclusion Our method can significantly improve the prediction of β-β contacts from any predicted residue contact maps. Prediction results of our algorithm could be directly applied to effectively facilitate the practical structure prediction of mainly β proteins. Availability All source data and codes are available at http://166.111.152.91/Downloads.html or the GitHub address of https://github.com/wzmao/RDb2C

    Efficient Adsorption of Nitrogen and Phosphorus in Wastewater by Biochar

    No full text
    Nitrogen and phosphorus play essential roles in ecosystems and organisms. However, with the development of industry and agriculture in recent years, excessive N and P have flowed into water bodies, leading to eutrophication, algal proliferation, and red tides, which are harmful to aquatic organisms. Biochar has a high specific surface area, abundant functional groups, and porous structure, which can effectively adsorb nitrogen and phosphorus in water, thus reducing environmental pollution, achieving the reusability of elements. This article provides an overview of the preparation of biochar, modification methods of biochar, advancements in the adsorption of nitrogen and phosphorus by biochar, factors influencing the adsorption of nitrogen and phosphorus in water by biochar, as well as reusability and adsorption mechanisms. Furthermore, the difficulties encountered and future research directions regarding the adsorption of nitrogen and phosphorus by biochar were proposed, providing references for the future application of biochar in nitrogen and phosphorus adsorption

    DeepConPred2: An Improved Method for the Prediction of Protein Residue Contacts

    No full text
    Information of residue-residue contacts is essential for understanding the mechanism of protein folding, and has been successfully applied as special topological restraints to simplify the conformational sampling in de novo protein structure prediction. Prediction of protein residue contacts has experienced amazingly rapid progresses recently, with prediction accuracy approaching impressively high levels in the past two years. In this work, we introduce a second version of our residue contact predictor, DeepConPred2, which exhibits substantially improved performance and sufficiently reduced running time after model re-optimization and feature updates. When testing on the CASP12 free modeling targets, our program reaches at least the same level of prediction accuracy as the best contact predictors so far and provides information complementary to other state-of-the-art methods in contact-assisted folding. Keywords: Residue contact prediction, Web server, Protein structure prediction, Contact-assisted folding, Machine learnin
    • …
    corecore