192 research outputs found

    The Importance Of Housing Variables In Predicting Economic Fluctuations

    Get PDF
    This paper investigates the importance of housing variables in predicting the six recent recessions using factor analysis model. It shows that housing variables have great predictive power in forecasting the downturn of the economy, but little predictive power when the economy is steady or is expanding. The explanation is that housing variables match consumers\u27 expectations of future income and employment, and consequently predict future economic downturn. By using Granger-Causality test and vector autoregression (VAR) model, combination of factor analysis and VAR model, and hard thresholding method to identify the importance of each housing variable, the results show that housing price indexes are not important in forecasting the economy, but that measures of housing volumes improve predictions. Moreover, the housing volume measures with one-unit of structure tends to play a greater role in the prediction

    Efficient generation of many-body singlet states of spin-1 bosons in optical superlattices

    Get PDF
    We propose an efficient stepwise adiabatic merging (SAM) method to generate many-body singlet states in antiferromagnetic spin-1 bosons in concatenated optical superlattices with isolated double-well arrays, by adiabatically ramping up the double-well bias. With an appropriate choice of bias sweeping rate and magnetic field, the SAM protocol predicts a fidelity as high as 90% for a sixteen-body singlet state and even higher fidelities for smaller even-body singlet states. During their evolution, the spin-1 bosons exhibit interesting squeezing dynamics, manifested by an odd-even oscillation of the experimentally observable squeezing parameter. The generated many-body singlet states may find practical applications in precision measurement of magnetic field gradient and in quantum information processing.Comment: 8 pages, 8 figures, submitted to Phys. Rev.

    Superconducting Properties of Graphene Doped Magnesium Diboride

    Get PDF
    Graphene, carbon in the form of monolayer sheets, has revealed astonishing and unique chemical and physical properties, which have made it an extremely active research topic in both materials science and physics (Novoselov, K. S. et al., 2004). Through chemical and materials integration, graphene is being actively exploited in a range of technological applications (Stankovich, S. et al., 2006). Superconductors can carry electrical current without any energy dissipation. The combination of both graphene and a superconductor into a composite has great potential for electrical devices and large scale applications. MgB2, a superconductor with a simple composition and two-gap feature has great potential for large current carrying applications, as demonstrated through a series of chemical dopings (Dou, S. X. et al. 2007). In the case of graphene’s, the strict two-dimensionality and its high electrical and thermal conductivities, make it an ideal candidate for integrating/doping into MgB2 in order to improve the superconducting properties

    Effective size of a trapped atomic Bose gas

    Full text link
    We investigate the temperature-dependent effective size of a trapped interacting atomic Bose gas within a mean field theory approximation. The sudden shrinking of the average length, as observed in an earlier experiment by Wang {\it et al.} [Chin. Phys. Lett. {\bf 20}, 799 (2003)], is shown to be a good indication for Bose-Einstein condensation (BEC). Our study also supports the use of the average width of a trapped Bose gas for a nondestructive calibration of its temperature.Comment: RevTex4, 6 pages, 4 eps figures, to appear in Phys. Rev.

    Enhanced measurement precision with continuous interrogation during dynamical decoupling

    Full text link
    Dynamical decoupling (DD) is normally ineffective when applied to DC measurement. In its straightforward implementation, DD nulls out DC signal as well while suppressing noise. This work proposes a phase relay method (PRM) that is capable of continuously interrogating the DC signal over many DD cycles. We illustrate its efficacy when applied to measurement of a weak DC magnetic field with an atomic spinor Bose-Einstein condensate. Sensitivities approaching standard quantum limit (SQL) or Heisenberg limit (HL) are potentially realizable for a coherent spin state (CSS) or a squeezed spin state (SSS) of 10,000 atoms respectively, while ambient laboratory level noise is suppressed by DD. Our work offers a practical approach to mitigate the limitations of DD to DC measurement and will like find other applications for resorting coherence in quantum sensing and quantum information processing research

    Differential responses to genotoxic agents between induced pluripotent stem cells and tumor cell lines

    Get PDF
    Given potential values of induced pluripotent stem (iPS) cells in basic biomedical research and regenerative medicine, it is important to understand how these cells regulate their genome stability in response to environmental toxins and carcinogens. The present study characterized the effect of Cr(VI), a well-known genotoxic agent and environmental carcinogen, on major molecular components of DNA damage response pathways in human iPS cells. We compared the effect of Cr(VI) on human iPS cells with two established cell lines, Tera-1 (teratoma origin) and BEAS-2B (lung epithelial origin). We also studied the effect of hydrogen peroxide and doxorubicin on modulating DNA damage responses in these cell types. We demonstrated that ATM and p53 phosphorylation is differentially regulated in human iPS cells compared with Tera-1 and BEAS-2B cells after exposure to various genotoxic agents. Moreover, we observed that inhibition of CK2, but not p38, promotes phosphorylation of p53(S392) in iPS cells. Combined, our data reveal some unique features of DNA damage responses in human iPS cells

    catena-Poly[[[diaqua­iron(II)]-μ-pyrazine-2,3-dicarboxyl­ato] dihydrate]

    Get PDF
    The crystal structure of the title compound, {[Fe(C6H2N2O4)(H2O)2]·2H2O}n, was synthesized by a diffusion method. It has a one-dimensional polymeric chain structure and the chains are further connected into a three-dimensional structure by hydrogen bonds. The FeII ion has a distorted octa­hedral coordination environment, with two N and two O atoms from the pyrazine-2,3-dicarboxyl­ate ligands in the equatorial plane and with two water mol­ecules in axial positions. The Fe atom lies on a crystallographic centre of symmetry and a twofold rotation axis passes through the pyrazine ring
    corecore