3 research outputs found

    On the origin of high-pressure mafic granulite in the Eastern Himalayan Syntaxis: implications for the tectonic evolution of the Himalayan orogen

    Get PDF
    The Himalayan orogen, resulting from the Early Cenozoic collision of the Indian and Asian plates, is an ideal vehicle to study active orogenic processes and test geodynamic models of how the crust responds to collisional orogeny. This paper focused on migmatitic high-pressure (HP) mafic granulite and associated leucosome from the Greater Himalayan Crystallines (GHC) in the Eastern Himalayan Syntaxis (EHS) in order to understand the conditions and timescales over which high-grade rocks and partial melts were produced during the Himalayan orogeny. Combining with previous study results from the Western and Central Himalayas and Trans-Himalayan magmatic arc, we obtained the following conclusions: (1) The mafic granulites from the EHS underwent HP and high-temperature (HT) granulite facies metamorphism and partial melting, with peak metamorphic conditions of 15–17 kbar and 820–880 °C. The GHC, at least its western part of the EHS, underwent coherent HP granulite-facies metamorphism. (2) The HP mafic granulites experienced long-lived dehydration melting of amphibole from ~40 Ma to ~20 Ma during prograde metamorphism and generated up to ~16 vol% partial melt. The variable degrees of dehydration melting of the HP mafic, pelitic and felsic granulites in the EHS generated voluminous granitic melts with distinct compositions, and provided the source for the Himalayan granites. (3) Peak metamorphic pressure of the GHC gradually decreases, whereas the metamorphic temperature progressively increases from the Western to Eastern Himalayas. This indicates that the Indian continental crust deeply subducted into the mantle in the Western Himalaya after the Indo-Asia collision, whereas the Indian crust underthrusted or relaminated beneath the Asian continental crust, and formed the thickened lower crust in the Central and Eastern Himalayas and Gangdese arc. (4) The melts derived from the underthrusted Indian crust probably resulted in isotopic compositional enrichment of the Early Cenozoic mantle- and juvenile crust-derived magmatic rocks of the Gangdese arc

    Purification, Preliminary Structure and Antitumor Activity of Exopolysaccharide Produced by <i>Streptococcus thermophilus</i> CH9

    No full text
    In the present study, the preliminary structure and in vitro antitumor activity of three exopolysaccharides (EPSs) from Streptococcus thermophilus CH9 were investigated. Then, three purified fractions of EPS-1a, EPS-2a, and EPS-3a were obtained by chromatography using DEAE-52 cellulose and Sephadex G-100, respectively. The average molecular weight of EPS-1a, EPS-2a, and EPS-3a, were 1.80 &#215; 106, 1.06 &#215; 106 and 1.05 &#215; 106. The monosaccharide composition of EPS-3a was dramatically different from the others. The EPS-1a and EPS-2a were mainly composed of mannose, in a ratio of 69.82% and 57.09%, respectively, while EPS-3a was mainly composed of glucose (63.93%), without mannose. In addition, the surface morphology observed suggested that there were protein particles on the sugar chain of EPS-3a and EPS-3a was a protein-containing polysaccharide. Furthermore, EPS-3a exhibited higher antitumor activity against human liver cancer HepG2 cells in vitro. The antitumor activity of EPS-3a in HepG2 cells was associated with cell apoptosis. HE staining and Hoechst 33342 staining showed that with the treatment of EPS-3a, HepG2 cells had typical morphological changes. Flow cytometry analysis showed that the cell cycle was arrested at G0/G1 phase
    corecore