8 research outputs found
Investigation of binary compounds using electron Rutherford backscattering
High-energy (40keV) electrons, scattering over large angles, transfer a small fraction of their kinetic energy to the target atoms, in the same way as ions do in Rutherford backscattering experiments. The authors show here that this energy transfer can be resolved and used to determine the mass of the scattering atom. In this way information on the surface composition for thicknesses of the order of 10nm can be obtained. The authors refer to this technique as “electron Rutherford backscattering.” In addition the peak width reveals unique information about the vibrational properties (mean kinetic energy) of the scattering atoms. Here the authors demonstrate that the method can be used to identify a number of technologically important compounds.This work is made possible by a grant of the
Australian Research Council
Electron spectroscopy using two-dimensional electron detection and a camera in a single electron counting mode
A brief description is given of an economical implementation of the read out of a two-dimensional detector in an electron spectrometer by a charge coupled device camera, using a pulse counting mode. Count rates up to 10 kHz can be handled in this way. A comparison with results obtained using a resistive anode detector is given for the case of electron scattering from Xe atoms. Good agreement was obtained between both detection techniques, establishing the validity of the method described here.This research was made possible by a grant of the Australian
Research Council