38 research outputs found

    Circular game chromatic number of graphs

    Full text link

    Mechanical azimuthal beam‐steering Fabry–Perot resonator antenna with large deflection angle

    No full text
    Abstract Continuous beam steering approach with minimal power consumption is highly desirable in modern antenna designs. A simple mechanical method for achieving beam steering in the Fabry–Perot resonator antenna (FPRA) is presented. It involves rotating the upper phase gradient metasurface (PGM) mechanically to change the aperture phase distribution, so the beam is continuously steered in the azimuthal plane while maintaining a large elevation angle. The proposed PGM unit cell comprises a hexagonal ring and patch printed on both sides of the substrate, along with a honeycomb lattice. A prototype antenna operating at 5.65 GHz is fabricated and measured to validate the feasibility. Measurement results show that the FPRA achieves a gain of 14.9 dBi, and can continuously steer its beam in the azimuthal plane with an elevation angle of around Ξ = 50°. Measured radiation patterns in eight azimuthal directions (φ = 0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°) are consistent with the simulated results. Compared with other electrical tuning methods, our design has a compact size and requires lower power for the PGM rotation

    Multi-Sensor Fusion-Based Permanent Magnet Demagnetization Detection in Permanent Magnet Synchronous Machines

    No full text

    Oxidative Stress Induced by Metal Ions in Bioleaching of LiCoO2 by an Acidophilic Microbial Consortium

    No full text
    © Copyright © 2020 Liu, Liu, Wu, Zhang, Gu, Zhu and Tan. An acidophilic microbial consortium (AMC) was used to investigate the fundamental mechanism behind the adverse effects of pulp density increase in the bioleaching of waste lithium ion batteries (WLIBs). Results showed that there existed the effect of metal-ion stress on the bio-oxidative activity of AMC. The Li+ and Co2+ accumulated in the leachate were the direct cause for the decrease in lithium and cobalt recovery yields under a high pulp density. In a simulated bioleaching system with 4.0% (w ⋅v–1) LiCoO2, the intracellular reactive oxygen species (ROS) content in AMC increased from 0.82 to 6.02 within 24 h, which was almost three times higher than that of the control (2.04). After the supplementation of 0.30 g⋅L–1 of exogenous glutathione (GSH), the bacterial intracellular ROS content decreased by 40% within 24 h and the activities of intracellular ROS scavenging enzymes, including glutathione peroxidase (GSH-Px) and catalase (CAT), were 1.4- and 2.0-folds higher in comparison with the control within 24 h. In the biofilms formed on pyrite in the bioleaching of WLIBs, it was found that metal-ion stress had a great influence on the 3-D structure and the amount of biomass of the biofilms. After the exogenous addition of GSH, the structure and the amount of biomass of the biofilms were restored to some extent. Eventually, through ROS regulation by the exogenous addition of GSH, very high metal recovery yields of 98.1% Li and 96.3% Co were obtained at 5.0% pulp density

    Cost-Effective Fabrication of Transparent Strain Sensors via Micro-Scale 3D Printing and Imprinting

    No full text
    The development of strain sensors with high sensitivity and stretchability is essential for health monitoring, electronic skin, wearable devices, and human-computer interactions. However, sensors that combine high sensitivity and ultra-wide detection generally require complex preparation processes. Here, a novel flexible strain sensor with high sensitivity and transparency was proposed by filling a multiwalled carbon nanotube (MWCNT) solution into polydimethylsiloxane (PDMS) channel films fabricated via an electric field-driven (EFD) 3D printing and molding hybrid process. The fabricated flexible strain sensor with embedded MWCNT networks had superior gauge factors of 90, 285, and 1500 at strains of 6.6%, 14%, and 20%, respectively. In addition, the flexible strain sensors with an optical transparency of 84% offered good stability and durability with no significant change in resistance after 8000 stretch-release cycles. Finally, the fabricated flexible strain sensors with embedded MWCNT networks showed good practical performance and could be attached to the skin to monitor various human movements such as wrist flexion, finger flexion, neck flexion, blinking activity, food swallowing, and facial expression recognition. These are good application strategies for wearable devices and health monitoring

    Study of Prevention and Control Technology for Roadway Excavation under the Soft and Extra-Thick Coal Roof in Luling Coal Mine

    No full text
    In view of the problems associated with the poor stability of coal walls, coal slide and leakage of top-coal at the tunnel excavation working face under a soft and extra-thick coal roof, the surrounding rock at the tunnel excavation working face must be strengthened. The theoretical analysis of rock pressure, numerical simulation and other methods were comprehensively used to study the coal-wall-slicing mechanism. Given the characteristics of a soft and extra-thick coal roof, the combined supporting technology of “coal wall water injection + metal roof frame” is proposed. The findings show that in the process of roadway excavation, the coal–rock junctions of the wall and the middle part of the roof are weak areas that are prone to spalling and therefore need to be strengthened. Laboratory tests determined the moisture content of the coal body during tunneling to provide data for the parameter design of coal wall water injection. Safe and efficient excavation of the roadway was ensured by injecting water into the coal wall in combination with a metal roof protection skeleton. The application of this technology not only effectively prevents rib spalling but improves control of the deformation of the surrounding rock. During 40 days of field observation, the maximum deformation of the roof was 24.8 mm, and the distance between the two roadway walls was 21.5 mm. The deformation of the roadway was controlled within a safety zone. The application of this technology reduced the repair rate of the roadway and improved the efficiency of the roadway excavation. It brought significant economic benefits and provides an important reference for similar mines

    Advances in bioleaching of waste lithium batteries under metal ion stress

    No full text
    In modern societies, the accumulation of vast amounts of waste Li-ion batteries (WLIBs) is a grave concern. Bioleaching has great potential for the economic recovery of valuable metals from various electronic wastes. It has been successfully applied in mining on commercial scales. Bioleaching of WLIBs can not only recover valuable metals but also prevent environmental pollution. Many acidophilic microorganisms (APM) have been used in bioleaching of natural ores and urban mines. However, the activities of the growth and metabolism of APM are seriously inhibited by the high concentrations of heavy metal ions released by the bio-solubilization process, which slows down bioleaching over time. Only when the response mechanism of APM to harsh conditions is well understood, effective strategies to address this critical operational hurdle can be obtained. In this review, a multi-scale approach is used to summarize studies on the characteristics of bioleaching processes under metal ion stress. The response mechanisms of bacteria, including the mRNA expression levels of intracellular genes related to heavy metal ion resistance, are also reviewed. Alleviation of metal ion stress via addition of chemicals, such as spermine and glutathione is discussed. Monitoring using electrochemical characteristics of APM biofilms under metal ion stress is explored. In conclusion, effective engineering strategies can be proposed based on a deep understanding of the response mechanisms of APM to metal ion stress, which have been used to improve bioleaching efficiency effectively in lab tests. It is very important to engineer new bioleaching strains with high resistance to metal ions using gene editing and synthetic biotechnology in the near future

    The Preparation and Properties of Multilayer Cu-MTa2O5 Composite Coatings on Ti6Al4V for Biomedical Applications

    No full text
    For the enhancement of the anticorrosion and antibacterial performance of the biomedical alloy Ti6Al4V, a novel Cu incorporated multilayer Ta2O5ceramic composite coating Cu-Ta2O5/Ta2O5/Ta2O5-TiO2/TiO2/Ti (coating codeCu-MTa2O5) was developed by radio frequency (RF) and direct current (DC) reactive magnetron sputtering. Meanwhile, to better display the multilayer Ta2O5 coating mentioned above, a monolayer Ta2O5 ceramic coating was deposited onto the surface of Ti6Al4V alloy as a reference. The surface morphology, microstructure, phase constituents, and elemental states of the coating were evaluated by atomic force microscopy, scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, respectively. The adhesion strength, wettability, anticorrosion and antibacterial properties of the coating were examined by a scratch tester, contact angle measurement, electrochemical workstations, and plate counting method, respectively. The results showed that the deposited coatings were amorphous and hydrophobic. Cu doped into the Ta2O5 coating existed as CuO and Cu2O. A Ta2O5-TiO2/TiO2/Ti multi-interlayer massively enhanced the adhesion strength of the coating, which was 2.9 times stronger than that of the monolayer Ta2O5coating. The multilayer Cu-MTa2O5 coating revealed a higher corrosion potential and smaller corrosion current density as compared to the uncoated Ti6Al4V, indicating the better anticorrosion performance of Ti6Al4V. Moreover, a 99.8% antibacterial effect of Cu-MTa2O5 coated against Staphylococcus aureuswas obtained
    corecore