87 research outputs found

    Time-restricted feeding improves metabolic and endocrine profiles in mice with polycystic ovary syndrome

    Get PDF
    ObjectivesPolycystic ovary syndrome (PCOS) is one of the most common endocrinopathy disorders in premenopausal women, which is characterized by hyperandrogenemia, anovulation, and polycystic ovarian morphology (PCOM). Time-restricted feeding (TRF) is a new intermittent restriction dietary pattern, which has been shown to have positive benefits on obesity and glycolipid metabolism disorders. We aimed to explore the effect of the feeding regimen (ad libitum vs. TRF) on the glycolipid metabolism and reproductive endocrine disorders in a PCOS mouse model.MethodsPCOS mouse model was induced by continuous subcutaneous administration of dihydrotestosterone for 21 days. Mice were fed a high-fat diet (HFD) for 8 weeks on an ad libitum or time- restricted diet (from 10:30 p.m. to 6:30 a.m.).ResultsCompared to control mice, PCOS mice that received TRF treatment had significantly lower body weight, reduced adiposity, lower area under the curve (AUC) of glucose response in the oral glucose tolerance test (OGTT), and lower AUC in the insulin tolerance test (ITT). TRF also ameliorated lipid metabolism, as shown by a reduction in plasma lipid profiles (triglycerides and cholesterol) and the triglyceride content in the liver of PCOS mice. In terms of reproduction, the plasma androgen level, plasma estrogen (E2) level, and luteinizing hormone (LH)/follicle stimulating hormone (FSH) ratio in PCOS mice were significantly reduced after 8 weeks of TRF treatment. In addition, ovarian histology showed that TRF inhibits cyst formation and promotes corpus luteum formation.ConclusionIn conclusion, TRF improved metabolic and endocrine profiles in mice with PCOS

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Influence of Different Reflux Groove Structures on the Flow Characteristics of the Roots Pump

    No full text
    A Roots pump often exhibits the typical characteristics of high gas pressure in the exhaust port, low pressure at a basic volume and large airflow pulsation at the outlet as a result of gas reflux. In light of this, this study employed Pumplinx software for the numerical calculation of the entire flow field of a two-bladed Roots pump. The effects of the rectangular and curved reflux groove structures on the internal flow field of a Roots pump, especially on the outlet pressure pulsation and flow rate, were unveiled separately. The rectangular reflux groove controlled the angle and thickness, while the curved reflux groove regulated the coordinates of the key points on the Bezier curve. It is worth recognizing that different reflux groove structures were not noticeable in enhancing the inlet measurement flow pattern; reduce the exhaust pressure pulsation, flow pulsation and exhaust section vortex. Interestingly, the rectangular return groove far outweighed the curved groove when optimizing the pressure and flow pulsation when registering the higher flow loss compared to the curved return groove. The merits and demerits of the Q criterion and omega criterion in characterizing the vortex structure of the flow field in the Roots pump were compared by Tecplot software. The omega criterion looked more robust, clear and continuous in revealing the strong and weak vortices in the Roots pump. The outcome of this research work could provide a reference for the study of Roots pump airflow pulsation, vortex analysis and casing structure design optimization

    Influence of Different Reflux Groove Structures on the Flow Characteristics of the Roots Pump

    No full text
    A Roots pump often exhibits the typical characteristics of high gas pressure in the exhaust port, low pressure at a basic volume and large airflow pulsation at the outlet as a result of gas reflux. In light of this, this study employed Pumplinx software for the numerical calculation of the entire flow field of a two-bladed Roots pump. The effects of the rectangular and curved reflux groove structures on the internal flow field of a Roots pump, especially on the outlet pressure pulsation and flow rate, were unveiled separately. The rectangular reflux groove controlled the angle and thickness, while the curved reflux groove regulated the coordinates of the key points on the Bezier curve. It is worth recognizing that different reflux groove structures were not noticeable in enhancing the inlet measurement flow pattern; reduce the exhaust pressure pulsation, flow pulsation and exhaust section vortex. Interestingly, the rectangular return groove far outweighed the curved groove when optimizing the pressure and flow pulsation when registering the higher flow loss compared to the curved return groove. The merits and demerits of the Q criterion and omega criterion in characterizing the vortex structure of the flow field in the Roots pump were compared by Tecplot software. The omega criterion looked more robust, clear and continuous in revealing the strong and weak vortices in the Roots pump. The outcome of this research work could provide a reference for the study of Roots pump airflow pulsation, vortex analysis and casing structure design optimization

    Research on positioning algorithm of underground personnel based on UWB

    No full text
    Aiming at the requirement of high real-time and high precision personnel positioning in underground mine, the positioning algorithm of underground personnel based on ultra wide band (UWB) is studied. The double-sided two-way ranging (DS-TWR) mode is adopted to measure the distance between the positioning base station and the positioning tag. This mode does not need the clock synchronization of the positioning base station and the positioning tag system. Therefore, the positioning precision is improved from the source. According to the ranging information, the weighted least squares (WLS) algorithm and CHAN algorithm are used to estimate the coordinates of the positioning tag. The performance of the two algorithms is compared and analyzed through static and dynamic experiments. The positioning precision is comprehensively evaluated through the root mean square error and the cumulative distribution function (CDF) of the error. The experimental results show that in static experiment, the root mean square errors of CHAN algorithm and WLS algorithm are 5.878 6 cm and 8.007 4 cm respectively. The root mean square error of CHAN algorithm is 26.59% lower than that of WLS algorithm. In dynamic experiment, the root mean square errors of CHAN algorithm and WLS algorithm are 12.2923 cm and 21.1809 cm respectively. The root mean square error of CHAN algorithm is 41.97% lower than that of WLS algorithm. The positioning precision of CHAN algorithm is higher than that of WLS algorithm. And CHAN algorithm is more suitable for underground personnel positioning in coal mines

    Near-Infrared-Emissive AIE Bioconjugates: Recent Advances and Perspectives

    No full text
    Near-infrared (NIR) fluorescence materials have exhibited formidable power in the field of biomedicine, benefiting from their merits of low autofluorescence background, reduced photon scattering, and deeper penetration depth. Fluorophores possessing planar conformation may confront the shortcomings of aggregation-caused quenching effects at the aggregate level. Fortunately, the concept of aggregation-induced emission (AIE) thoroughly reverses this dilemma. AIE bioconjugates referring to the combination of luminogens showing an AIE nature with biomolecules possessing specific functionalities are generated via the covalent conjugation between AIEgens and functional biological species, covering carbohydrates, peptides, proteins, DNA, and so on. This perfect integration breeds unique superiorities containing high brightness, good water solubility, versatile functionalities, and prominent biosafety. In this review, we summarize the recent progresses of NIR-emissive AIE bioconjugates focusing on their design principles and biomedical applications. Furthermore, a brief prospect of the challenges and opportunities of AIE bioconjugates for a wide range of biomedical applications is presented

    Improved LC/MS/MS Quantification Using Dual Deuterated Isomers as the Surrogates: A Case Analysis of Enrofloxacin Residue in Aquatic Products

    No full text
    Extensive and high residue variations in enrofloxacin (ENR) exist in different aquatic products. A novel quantitative method for measuring ENR using high-performance liquid chromatography–tandem mass spectrometry was developed employing enrofloxacin-d5 (ENR-d5) and enrofloxacin-d3 (ENR-d3) as isotope surrogates. This reduced the deviation of detected values, which results from the overpass of the linear range and/or the large difference in the residue between the isotope standard and ENR, from the actual content. Furthermore, high residue levels of ENR can be directly diluted and re-calibrated by the corresponding curve with the addition of high levels of another internal surrogate without repeated sample preparation, avoiding the overflow of the instrument response. The validation results demonstrated that the method can simultaneously determine ENR residues from MQL (2 µg/kg) to 5000 × MQL (method quantification limit) with recoveries between 97.1 and 106%, and intra-precision of no more than 2.14%. This method realized a wide linear calibration range with dual deuterated isomers, which has not been previously reported in the literature. The developed method was successfully applied to the analysis of ENR in different aquatic products, with ENR residue levels varying from 108 to 4340 μg/kg and an interval of precision in the range of 0.175~6.72%. These results demonstrate that batch samples with a high variation in ENR residues (over the linear range with a single isotope standard) can be detected by the dual isotope surrogates method in a single sample preparation process

    A Method for Measuring the Volume of Transdermally Extracted Interstitial Fluid by a Three-Electrode Skin Resistance Sensor

    No full text
    It is difficult to accurately measure the volume of transdermally extracted interstitial fluid (ISF), which is important for improving blood glucose prediction accuracy. Skin resistance, which is a good indicator of skin permeability, can be used to determine the volume of extracted ISF. However, it is a challenge to realize in vivo longitudinal skin resistance measurements of microareas. In this study, a three-electrode sensor was presented for measuring single-point skin resistance in vivo, and a method for determining the volume of transdermally extracted ISF using this sensor was proposed. Skin resistance was measured under static and dynamic conditions. The correlation between the skin resistance and the permeation rate of transdermally extracted ISF was proven. The volume of transdermally extracted ISF was determined using skin resistance. Factors affecting the volume prediction accuracy of transdermally extracted ISF were discussed. This method is expected to improve the accuracy of blood glucose prediction, and is of great significance for the clinical application of minimally invasive blood glucose measurement
    • …
    corecore