376 research outputs found

    SpreadCluster: Recovering Versioned Spreadsheets through Similarity-Based Clustering

    Full text link
    Version information plays an important role in spreadsheet understanding, maintaining and quality improving. However, end users rarely use version control tools to document spreadsheet version information. Thus, the spreadsheet version information is missing, and different versions of a spreadsheet coexist as individual and similar spreadsheets. Existing approaches try to recover spreadsheet version information through clustering these similar spreadsheets based on spreadsheet filenames or related email conversation. However, the applicability and accuracy of existing clustering approaches are limited due to the necessary information (e.g., filenames and email conversation) is usually missing. We inspected the versioned spreadsheets in VEnron, which is extracted from the Enron Corporation. In VEnron, the different versions of a spreadsheet are clustered into an evolution group. We observed that the versioned spreadsheets in each evolution group exhibit certain common features (e.g., similar table headers and worksheet names). Based on this observation, we proposed an automatic clustering algorithm, SpreadCluster. SpreadCluster learns the criteria of features from the versioned spreadsheets in VEnron, and then automatically clusters spreadsheets with the similar features into the same evolution group. We applied SpreadCluster on all spreadsheets in the Enron corpus. The evaluation result shows that SpreadCluster could cluster spreadsheets with higher precision and recall rate than the filename-based approach used by VEnron. Based on the clustering result by SpreadCluster, we further created a new versioned spreadsheet corpus VEnron2, which is much bigger than VEnron. We also applied SpreadCluster on the other two spreadsheet corpora FUSE and EUSES. The results show that SpreadCluster can cluster the versioned spreadsheets in these two corpora with high precision.Comment: 12 pages, MSR 201

    Privacy Preserving Utility Mining: A Survey

    Full text link
    In big data era, the collected data usually contains rich information and hidden knowledge. Utility-oriented pattern mining and analytics have shown a powerful ability to explore these ubiquitous data, which may be collected from various fields and applications, such as market basket analysis, retail, click-stream analysis, medical analysis, and bioinformatics. However, analysis of these data with sensitive private information raises privacy concerns. To achieve better trade-off between utility maximizing and privacy preserving, Privacy-Preserving Utility Mining (PPUM) has become a critical issue in recent years. In this paper, we provide a comprehensive overview of PPUM. We first present the background of utility mining, privacy-preserving data mining and PPUM, then introduce the related preliminaries and problem formulation of PPUM, as well as some key evaluation criteria for PPUM. In particular, we present and discuss the current state-of-the-art PPUM algorithms, as well as their advantages and deficiencies in detail. Finally, we highlight and discuss some technical challenges and open directions for future research on PPUM.Comment: 2018 IEEE International Conference on Big Data, 10 page

    Large Language Models in Education: Vision and Opportunities

    Full text link
    With the rapid development of artificial intelligence technology, large language models (LLMs) have become a hot research topic. Education plays an important role in human social development and progress. Traditional education faces challenges such as individual student differences, insufficient allocation of teaching resources, and assessment of teaching effectiveness. Therefore, the applications of LLMs in the field of digital/smart education have broad prospects. The research on educational large models (EduLLMs) is constantly evolving, providing new methods and approaches to achieve personalized learning, intelligent tutoring, and educational assessment goals, thereby improving the quality of education and the learning experience. This article aims to investigate and summarize the application of LLMs in smart education. It first introduces the research background and motivation of LLMs and explains the essence of LLMs. It then discusses the relationship between digital education and EduLLMs and summarizes the current research status of educational large models. The main contributions are the systematic summary and vision of the research background, motivation, and application of large models for education (LLM4Edu). By reviewing existing research, this article provides guidance and insights for educators, researchers, and policy-makers to gain a deep understanding of the potential and challenges of LLM4Edu. It further provides guidance for further advancing the development and application of LLM4Edu, while still facing technical, ethical, and practical challenges requiring further research and exploration.Comment: IEEE BigData 2023. 10 page
    • …
    corecore