94 research outputs found

    Optical Synthesis of Transient Chirality in Achiral Plasmonic Metasurfaces

    Full text link
    As much as chiral metasurfaces are significant in stereochemistry and polarization control, tunable chiroptical response is important for their dynamic counterparts. A single metasurface device with invertible chiral states can selectively harness or manipulate both handedness of circularly polarized light upon demand, where in fact chiral inversion in molecules is an active research field. Tactics for chirality switching can be classified into geometry modification and refractive index tuning. However, these generally confront slow modulation speed or restrained refractive index tuning effects in the visible regime with forbidden 'true' inversion. Here, we reconfigure the 'optical' geometry through inhomogeneous spatiotemporal distribution of hot carriers as a breakthrough, transforming a plasmonic achiral metasurface into an ultrafast transient chiral medium with near-perfectly-invertible handedness in the visible. The photoinduced chirality relaxes through the fast spatial diffusion process of electron temperature compared to electron-phonon relaxation, empowering hot-carrier-based devices to be particularly suitable for ultrafast chiroptics

    Design of multifunctional color routers with Kerker switching using generative adversarial networks

    Full text link
    To achieve optoelectronic devices with high resolution and efficiency, there is a pressing need for optical structural units that possess an ultrasmall footprint yet exhibit strong controllability in both the frequency and spatial domains. For dielectric nanoparticles, the overlap of electric and magnetic dipole moments can scatter light completely forward or backward, which is called Kerker theory. This effect can expand to any multipoles and any directions, re-named as generalized Kerker effect, and realize controllable light manipulation at full space and full spectrum using well-designed dielectric structures. However, the complex situations of multipole couplings make it difficult to achieve structural design. Here, generative artificial intelligence (AI) is utilized to facilitate multi-objective-oriented structural design, wherein we leverage the concept of "combined spectra" that consider both spectra and direction ratios as labels. The proposed generative adversarial network (GAN) is named as DDGAN (double-discriminator GAN) which discriminates both images and spectral labels. Using trained networks, we achieve the simultaneous design for scattering color and directivities, RGB color routers, as well as narrowband light routers. Notably, all generated structures possess a footprint less than 600x600 nm indicating their potential applications in optoelectronic devices with ultrahigh resolution

    A Superlens Based on Metal-Dielectric Composites

    Full text link
    Pure noble metals are typically considered to be the materials of choice for a near-field superlens that allows subwavelength resolution by recovering both propagating and evanescent waves. However, a superlens based on bulk metal can operate only at a single frequency for a given dielectric host. In this Letter, it is shown that a composite metal-dielectric film, with an appropriate metal filling factor, can operate at practically any desired wavelength in the visible and near-infrared ranges. Theoretical analysis and simulations verify the feasibility of the proposed lens.Comment: 15 pages, 4 figure
    • …
    corecore