18 research outputs found

    Assessing the impact of natural service bulls and genotype by environment interactions on genetic gain and inbreeding in organic dairy cattle genomic breeding programs.

    Full text link
    The objective of the present study was to compare genetic gain and inbreeding coefficients of dairy cattle in organic breeding program designs by applying stochastic simulations. Evaluated breeding strategies were: (i) selecting bulls from conventional breeding programs, and taking into account genotype by environment (GĂ—E) interactions, (ii) selecting genotyped bulls within the organic environment for artificial insemination (AI) programs and (iii) selecting genotyped natural service bulls within organic herds. The simulated conventional population comprised 148 800 cows from 2976 herds with an average herd size of 50 cows per herd, and 1200 cows were assigned to 60 organic herds. In a young bull program, selection criteria of young bulls in both production systems (conventional and organic) were either 'conventional' estimated breeding values (EBV) or genomic estimated breeding values (GEBV) for two traits with low (h 2=0.05) and moderate heritability (h 2=0.30). GEBV were calculated for different accuracies (r mg), and GĂ—E interactions were considered by modifying originally simulated true breeding values in the range from r g=0.5 to 1.0. For both traits (h 2=0.05 and 0.30) and r mgâ©ľ0.8, genomic selection of bulls directly in the organic population and using selected bulls via AI revealed higher genetic gain than selecting young bulls in the larger conventional population based on EBV; also without the existence of GĂ—E interactions. Only for pronounced GĂ—E interactions (r g=0.5), and for highly accurate GEBV for natural service bulls (r mg>0.9), results suggests the use of genotyped organic natural service bulls instead of implementing an AI program. Inbreeding coefficients of selected bulls and their offspring were generally lower when basing selection decisions for young bulls on GEBV compared with selection strategies based on pedigree indices.peerReviewe

    Lying, Feeding and Activity Preference of Weaned Piglets for LED-Illuminated vs. Dark Pen Compartments

    Get PDF
    Little is known on the effect of light on pig behaviour. The choice behaviour of weaned piglets kept under two different light-emitting diode (LED) illuminance levels was investigated: 32 piglets (in two batches) were housed in a preference test room composed of two identical double pen units. One side of the pen unit was permanently illuminated with 600 lux, while the other was darkened to almost 0 lux (~0 lx); by using a passageway, piglets could move between the two sides. The “lying”, “eating” and “activity” behaviours were evaluated during three days in the first, third and fifth experimental week based on video recordings and a 5-min time sampling method. At first, piglets preferred to stay in the 600 lux illuminated compartments. Then, this preference decreased for the “eating” and “activity” behaviours and reversed for the “lying” behaviour, with the darkened compartments being preferred. The results also show that pen soiling was higher under 600 lux, but feed consumption was not affected by the illuminance. Since pigs choose between the two illuminance levels to perform specific behaviours, illuminance could be used to divide the pens into functional areas and, thus, help in meeting pigs’ behavioural needs

    Influence of different LED light colour temperatures on the preference behaviour of weaned piglets

    Get PDF
    This study investigates the effect of different LED lighting colour temperatures on the preference behaviour of 4-week-old weaned piglets. A total of 32 piglets were housed in two replications in an experimental pen area with four identically equipped pen compartments connected two by two. Each pen unit offered a compartment set to a colour temperature of 3000 kelvin and another set to 6500 kelvin, at 80 lux during the day. Each piglet could freely choose between the two compartments by using a passageway. Over a period of five weeks, the behaviours “lying”, “eating” and “activity” were video recorded for 72 h during the 1st, 3rd and 5th week of the experiment. The location of the piglet in the pen and its behaviour were determined by using time sampling. In the first week, the piglets preferred the colour temperature of 3000 K to perform all behaviours. In the following weeks this preference decreased. Results also show that feed consumption and soiling of the pens were higher under 6500 K. Pigs can differentiate between the different colour temperatures and use them for different behaviours. This can be used to divide pens into functional areas in order to better suit the behavioural needs of pigsPublikationsfond ML

    Modification of the equine gastrointestinal microbiota by Jerusalem artichoke meal supplementation

    Full text link
    The objective of this study was to investigate the impact of natural prebiotic active compounds on the microbial composition in different regions of the equine gastrointestinal tract. Twelve adult horses (body weight [bwt] 534 ± 64.5 kg; age 14 ± 7.5 years) were randomly divided into two feeding groups. Six horses received a basal diet consisting of 1.5 kg hay/ 100 kg bwt x d-1 and oat grains equal to 1.19 g starch/kg bwt x d-1, supplemented with Jerusalem artichoke meal providing prebiotic fructooligosaccharides + inulin in a quantity of 0.15 g/kg bwt x d-1. The remaining horses received a placebo added to the basal diet. The horses were fed for 21 d and euthanized at the end of the feeding period. Digesta samples from different parts of the gastrointestinal tract were taken, DNA extracted and the V1-V2 region of the 16S rRNA gene amplified. Supplementation with the prebiotic increased the relative abundance of Lactobacillus (P < 0.05), with a concurrent reduction of the relative abundance of Streptococcus mainly in the stomach (P < 0.05). In the hindgut, the supplemental prebiotic also increased the relative abundance of Lactobacillus but further reduced the relative abundance of fibrolytic bacteria, specifically the unclassified members of the families Lachnospiraceae (P < 0.05) and Ruminococcaceae. The relative abundance of the genus Ruminococcus increased solely in the caecum and colon transversum. Overall, the addition of the prebiotic significantly increased the diversity in nearly all parts of the gastrointestinal tract (P < 0.05). The feeding of this natural prebiotic compound to horses had an impact on the microbial community in the entire gastrointestinal tract. Furthermore, the effect on the bacterial community in the foregut (especially the stomach) was more pronounced in comparison to the effect in the hindgut. Therefore, the impact on stomach health should be carefully considered.</p

    Detection of MCPG metabolites in horses with atypical myopathy.

    Full text link
    Atypical myopathy (AM) in horses is caused by ingestion of seeds of the Acer species (Sapindaceae family). Methylenecyclopropylacetyl-CoA (MCPA-CoA), derived from hypoglycin A (HGA), is currently the only active toxin in Acer pseudoplatanus or Acer negundo seeds related to AM outbreaks. However, seeds or arils of various Sapindaceae (e.g., ackee, lychee, mamoncillo, longan fruit) also contain methylenecyclopropylglycine (MCPG), which is a structural analogue of HGA that can cause hypoglycaemic encephalopathy in humans. The active poison formed from MCPG is methylenecyclopropylformyl-CoA (MCPF-CoA). MCPF-CoA and MCPA-CoA strongly inhibit enzymes that participate in β-oxidation and energy production from fat. The aim of our study was to investigate if MCPG is involved in Acer seed poisoning in horses. MCPG, as well as glycine and carnitine conjugates (MCPF-glycine, MCPF-carnitine), were quantified using high-performance liquid chromatography-tandem mass spectrometry of serum and urine from horses that had ingested Acer pseudoplatanus seeds and developed typical AM symptoms. The results were compared to those of healthy control horses. For comparison, HGA and its glycine and carnitine derivatives were also measured. Additionally, to assess the degree of enzyme inhibition of β-oxidation, several acyl glycines and acyl carnitines were included in the analysis. In addition to HGA and the specific toxic metabolites (MCPA-carnitine and MCPA-glycine), MCPG, MCPF-glycine and MCPF-carnitine were detected in the serum and urine of affected horses. Strong inhibition of β-oxidation was demonstrated by elevated concentrations of all acyl glycines and carnitines, but the highest correlations were observed between MCPF-carnitine and isobutyryl-carnitine (r = 0.93) as well as between MCPA- (and MCPF-) glycine and valeryl-glycine with r = 0.96 (and r = 0.87). As shown here, for biochemical analysis of atypical myopathy of horses, it is necessary to take MCPG and the corresponding metabolites into consideration

    Hypoglycin A Content in Blood and Urine Discriminates Horses with Atypical Myopathy from Clinically Normal Horses Grazing on the Same Pasture

    Full text link
    <div><p>Hypoglycin A (HGA) in seeds of <i>Acer spp</i>. is suspected to cause seasonal pasture myopathy in North America and equine atypical myopathy (AM) in Europe, fatal diseases in horses on pasture. In previous studies, this suspicion was substantiated by the correlation of seed HGA content with the concentrations of toxic metabolites in urine and serum (MCPA-conjugates) of affected horses. However, seed sampling was conducted after rather than during an outbreak of the disease. The aim of this study was to further confirm the causality between HGA occurrence and disease outbreak by seed sampling during an outbreak and the determination of i) HGA in seeds and of ii) HGA and MCPA-conjugates in urine and serum of diseased horses. Furthermore, cograzing healthy horses, which were present on AM affected pastures, were also investigated. AM-pastures in Germany were visited to identify seeds of <i>Acer pseudoplatanus</i> and serum (n = 8) as well as urine (n = 6) from a total of 16 diseased horses were analyzed for amino acid composition by LC-ESI-MS/MS, with a special focus on the content of HGA. Additionally, the content of its toxic metabolite was measured in its conjugated form in body fluids (UPLC-MS/MS). The seeds contained 1.7–319.8 μg HGA/g seed. The content of HGA in serum of affected horses ranged from 387.8–8493.8 μg/L (controls < 10 μg/L), and in urine from 143.8–926.4 μg/L (controls < 10 μg/L), respectively. Healthy cograzing horses on AM-pastures showed higher serum (108.8 ± 83.76 μg/L) and urine concentrations (26.9 ± 7.39 μg/L) compared to control horses, but lower concentrations compared to diseased horses. The range of MCPA-carnitine and creatinine concentrations found in diseased horses in serum and urine were 0.17–0.65 mmol/L (controls < 0.01), and 0.34–2.05 μmol/mmoL (controls < 0.001), respectively. MCPA-glycine levels in urine of cograzing horses were higher compared to controls. Thus, the causal link between HGA intoxication and disease outbreak could be further substantiated, and the early detection of HGA in cograzing horses, which are clinically normal, might be a promising step in prophylaxis.</p></div

    Specific characteristics of AM-affected and cograzing horses dedicated to the individual AM-pasture.

    Full text link
    <p>TN = total number of horses on individual pasture; <sup>1</sup> in hrs/d, *additional food stuffs (hay, concentrate); AH = affected horses, CG = cograzing horses: the denomination is made up of the letter of pasture (A-L) and the number of affected or cograzing horses on this pasture; WB = Warmblood, GRP = German Riding Pony, HF = haflinger; g = gelding, m = male, s = stallion; **survived, affect date 17<sup>th</sup> Nov 2013, ***not available.</p
    corecore