155 research outputs found

    Seamlessly Unifying Attributes and Items: Conversational Recommendation for Cold-Start Users

    Full text link
    Static recommendation methods like collaborative filtering suffer from the inherent limitation of performing real-time personalization for cold-start users. Online recommendation, e.g., multi-armed bandit approach, addresses this limitation by interactively exploring user preference online and pursuing the exploration-exploitation (EE) trade-off. However, existing bandit-based methods model recommendation actions homogeneously. Specifically, they only consider the items as the arms, being incapable of handling the item attributes, which naturally provide interpretable information of user's current demands and can effectively filter out undesired items. In this work, we consider the conversational recommendation for cold-start users, where a system can both ask the attributes from and recommend items to a user interactively. This important scenario was studied in a recent work. However, it employs a hand-crafted function to decide when to ask attributes or make recommendations. Such separate modeling of attributes and items makes the effectiveness of the system highly rely on the choice of the hand-crafted function, thus introducing fragility to the system. To address this limitation, we seamlessly unify attributes and items in the same arm space and achieve their EE trade-offs automatically using the framework of Thompson Sampling. Our Conversational Thompson Sampling (ConTS) model holistically solves all questions in conversational recommendation by choosing the arm with the maximal reward to play. Extensive experiments on three benchmark datasets show that ConTS outperforms the state-of-the-art methods Conversational UCB (ConUCB) and Estimation-Action-Reflection model in both metrics of success rate and average number of conversation turns.Comment: TOIS 202

    Reconciliation of Pre-trained Models and Prototypical Neural Networks in Few-shot Named Entity Recognition

    Full text link
    Incorporating large-scale pre-trained models with the prototypical neural networks is a de-facto paradigm in few-shot named entity recognition. Existing methods, unfortunately, are not aware of the fact that embeddings from pre-trained models contain a prominently large amount of information regarding word frequencies, biasing prototypical neural networks against learning word entities. This discrepancy constrains the two models' synergy. Thus, we propose a one-line-code normalization method to reconcile such a mismatch with empirical and theoretical grounds. Our experiments based on nine benchmark datasets show the superiority of our method over the counterpart models and are comparable to the state-of-the-art methods. In addition to the model enhancement, our work also provides an analytical viewpoint for addressing the general problems in few-shot name entity recognition or other tasks that rely on pre-trained models or prototypical neural networks.Comment: Findings of EMNLP 202

    Towards Equipping Transformer with the Ability of Systematic Compositionality

    Full text link
    One of the key factors in language productivity and human cognition is the ability of systematic compositionality, which refers to understanding composed unseen examples of seen primitives. However, recent evidence reveals that the Transformers have difficulty generalizing the composed context based on the seen primitives. To this end, we take the first step to propose a compositionality-aware Transformer called CAT and two novel pre-training tasks to facilitate systematic compositionality. We tentatively provide a successful implementation of a multi-layer CAT on the basis of the especially popular BERT. The experimental results demonstrate that CAT outperforms baselines on compositionality-aware tasks with minimal impact on the effectiveness on standardized language understanding tasks.Comment: Accepted to AAAI 2024. Paper with appendi

    DREditor: An Time-efficient Approach for Building a Domain-specific Dense Retrieval Model

    Full text link
    Deploying dense retrieval models efficiently is becoming increasingly important across various industries. This is especially true for enterprise search services, where customizing search engines to meet the time demands of different enterprises in different domains is crucial. Motivated by this, we develop a time-efficient approach called DREditor to edit the matching rule of an off-the-shelf dense retrieval model to suit a specific domain. This is achieved by directly calibrating the output embeddings of the model using an efficient and effective linear mapping. This mapping is powered by an edit operator that is obtained by solving a specially constructed least squares problem. Compared to implicit rule modification via long-time finetuning, our experimental results show that DREditor provides significant advantages on different domain-specific datasets, dataset sources, retrieval models, and computing devices. It consistently enhances time efficiency by 100-300 times while maintaining comparable or even superior retrieval performance. In a broader context, we take the first step to introduce a novel embedding calibration approach for the retrieval task, filling the technical blank in the current field of embedding calibration. This approach also paves the way for building domain-specific dense retrieval models efficiently and inexpensively.Comment: 15 pages, 6 figures, Codes are available at https://github.com/huangzichun/DREdito

    Prompting and Evaluating Large Language Models for Proactive Dialogues: Clarification, Target-guided, and Non-collaboration

    Full text link
    Conversational systems based on Large Language Models (LLMs), such as ChatGPT, show exceptional proficiency in context understanding and response generation. However, despite their impressive capabilities, they still possess limitations, such as providing randomly-guessed answers to ambiguous queries or failing to refuse users' requests, both of which are considered aspects of a conversational agent's proactivity. This raises the question of whether LLM-based conversational systems are equipped to handle proactive dialogue problems. In this work, we conduct a comprehensive analysis of LLM-based conversational systems, specifically focusing on three aspects of proactive dialogue systems: clarification, target-guided, and non-collaborative dialogues. To trigger the proactivity of LLMs, we propose the Proactive Chain-of-Thought prompting scheme, which augments LLMs with the goal planning capability over descriptive reasoning chains. Empirical findings are discussed to promote future studies on LLM-based proactive dialogue systems.Comment: Work in progres

    Towards Goal-oriented Intelligent Tutoring Systems in Online Education

    Full text link
    Interactive Intelligent Tutoring Systems (ITSs) enhance traditional ITSs by promoting effective learning through interactions and problem resolution in online education. Yet, proactive engagement, prioritizing resource optimization with planning and assessment capabilities, is often overlooked in current ITS designs. In this work, we investigate a new task, named Goal-oriented Intelligent Tutoring Systems (GITS), which aims to enable the student's mastery of a designated concept by strategically planning a customized sequence of exercises and assessment. To address the problem of goal-oriented policy learning in GITS, we propose a novel graph-based reinforcement learning framework, named Planning-Assessment-Interaction (PAI). Specifically, we first leverage cognitive structure information to improve state representation learning and action selection for planning the next action, which can be either to tutor an exercise or to assess the target concept. Further, we use a dynamically updated cognitive diagnosis model to simulate student responses to exercises and concepts. Three benchmark datasets across different subjects are constructed for enabling offline academic research on GITS. Experimental results demonstrate the effectiveness and efficiency of PAI and extensive analyses of various types of students are conducted to showcase the challenges in this task

    Concept -- An Evaluation Protocol on Conversational Recommender Systems with System-centric and User-centric Factors

    Full text link
    The conversational recommendation system (CRS) has been criticized regarding its user experience in real-world scenarios, despite recent significant progress achieved in academia. Existing evaluation protocols for CRS may prioritize system-centric factors such as effectiveness and fluency in conversation while neglecting user-centric aspects. Thus, we propose a new and inclusive evaluation protocol, Concept, which integrates both system- and user-centric factors. We conceptualise three key characteristics in representing such factors and further divide them into six primary abilities. To implement Concept, we adopt a LLM-based user simulator and evaluator with scoring rubrics that are tailored for each primary ability. Our protocol, Concept, serves a dual purpose. First, it provides an overview of the pros and cons in current CRS models. Second, it pinpoints the problem of low usability in the "omnipotent" ChatGPT and offers a comprehensive reference guide for evaluating CRS, thereby setting the foundation for CRS improvement.Comment: 33 pages, 18 tables, and 10 figures. Our code is available at https://github.com/huangzichun/Concept4CR
    • …
    corecore