47 research outputs found

    Genetic differentiation of brackish water populations of cod Gadus morhua in the southern Baltic, inferred from genotyping using SNP-arrays

    Get PDF
    The Baltic is a semi-enclosed sea characterised by decreasing salinity in the eastern and northern direction with only the deeper parts of the southern Baltic suitable as spawning grounds for marine species like cod. Baltic cod exhibits various adaptations to brackish water conditions, yet the inflow of salty North Sea water near the bottom remains an influence on the spawning success of the Baltic cod. The eastern Baltic population has been very weakly studied in comparison with the western population. The aim of this study is to demonstrate for the first time genetic differentiation by the use of a large number of SNPs between eastern and western Baltic populations existing in differentiated salinity conditions. Two cod samples were collected from the Bay of Gdańsk, Poland and one from the Kiel Bight, Germany. Samples were genotyped using a cod derived SNP-array (Illumina) with 10 913 SNPs. A selection of diagnostic SNPs was performed. A set of 7944 validated SNPs were analysed to assess the differentiation of three samples of cod. Results indicated a clear distinctness of the Kiel Bight from the populations of the eastern Baltic. FST comparison between both eastern samples was non-significant. Clustering analysis, principal coordinates analysis and assignment test clearly indicated that the eastern samples should be considered as one subpopulation, well differentiated from the western subpopulation. With the SNP approach, no differentiation between groups containing ‘healthy’ and ‘non-healthy’ cod individuals was observed

    A marine biodiversity observation network for genetic monitoring of hard-bottom communities (ARMS-MBON)

    Get PDF
    Marine hard-bottom communities are undergoing severe change under the influence of multiple drivers, notably climate change, extraction of natural resources, pollution and eutrophication, habitat degradation, and invasive species. Monitoring marine biodiversity in such habitats is, however, challenging as it typically involves expensive, non-standardized, and often destructive sampling methods that limit its scalability. Differences in monitoring approaches furthermore hinders inter-comparison among monitoring programs. Here, we announce a Marine Biodiversity Observation Network (MBON) consisting of Autonomous Reef Monitoring Structures (ARMS) with the aim to assess the status and changes in benthic fauna with genomic-based methods, notably DNA metabarcoding, in combination with image-based identifications. This article presents the results of a 30-month pilot phase in which we established an operational and geographically expansive ARMS-MBON. The network currently consists of 20 observatories distributed across European coastal waters and the polar regions, in which 134 ARMS have been deployed to date. Sampling takes place annually, either as short-term deployments during the summer or as long-term deployments starting in spring. The pilot phase was used to establish a common set of standards for field sampling, genetic analysis, data management, and legal compliance, which are presented here. We also tested the potential of ARMS for combining genetic and image-based identification methods in comparative studies of benthic diversity, as well as for detecting non-indigenous species. Results show that ARMS are suitable for monitoring hard-bottom environments as they provide genetic data that can be continuously enriched, re-analyzed, and integrated with conventional data to document benthic community composition and detect non-indigenous species. Finally, we provide guidelines to expand the network and present a sustainability plan as part of the European Marine Biological Resource Centre (www.embrc.eu).Peer reviewe

    Genetic diversity and connectivity within Mytilus spp. in the subarctic and Arctic

    Get PDF
    Climate changes in the Arctic are predicted to alter distributions of marine species. However, such changes are difficult to quantify because information on present species distribution and the genetic variation within species is lacking or poorly examined. Blue mussels,Mytilusspp. are ecosystem engineers in the coastal zone globally. In order to improve knowledge of distribution and genetic structure of theMytilus eduliscomplex in the Arctic, we analyzed 81 SNPs in 534Mytilusspp. individuals sampled at 13 sites to provide baseline data for distribution and genetic variation ofMytilusmussels in the European Arctic.Mytilus eduliswas the most abundant species found with a clear genetic split between populations in Greenland and the Eastern Atlantic. Surprisingly, analyses revealed the presence ofM. trossulusin high Arctic NW Greenland (77°N) andM. galloprovincialisor their hybrids in SW Greenland, Svalbard and the Pechora Sea. Furthermore, a high degree of hybridization and introgression between species was observed. Our study highlights the importance of distinguishing between congener species, which can display local adaptation and suggests that information on dispersal routes and barriers are essential for accurate predictions of regional susceptibility to range expansions or invasions of boreal species in the Arctic

    Mitochondrial DNA transmission in the hybridization and introgression zone of Mytilus edulis and M.Trossulus in the Baltic and Danish straits

    No full text

    Variation of Mitochondrial DNA in European populations of Mytilus

    No full text
    corecore