1,347 research outputs found

    Isoprene photooxidation : new insights into the production of acids and organic nitrates

    Get PDF
    We describe a nearly explicit chemical mechanism for isoprene photooxidation guided by chamber studies that include time-resolved observation of an extensive suite of volatile compounds. We provide new constraints on the chemistry of the poorly-understood isoprene δ-hydroxy channels, which account for more than one third of the total isoprene carbon flux and a larger fraction of the nitrate yields. We show that the cis branch dominates the chemistry of the δ-hydroxy channel with less than 5% of the carbon following the trans branch. The modelled yield of isoprene nitrates is 12±3% with a large difference between the δ and β branches. The oxidation of these nitrates releases about 50% of the NOx. Methacrolein nitrates (modelled yield ≃15±3% from methacrolein) and methylvinylketone nitrates (modelled yield ≃11±3% yield from methylvinylketone) are also observed. Propanone nitrate, produced with a yield of 1% from isoprene, appears to be the longest-lived nitrate formed in the total oxidation of isoprene. We find a large molar yield of formic acid and suggest a novel mechanism leading to its formation from the organic nitrates. Finally, the most important features of this mechanism are summarized in a condensed scheme appropriate for use in global chemical transport models

    Exploring Oxidation in the Remote Free Troposphere: Insights from Atmospheric Tomography (ATom)

    Get PDF
    Earth's atmosphere oxidizes the greenhouse gas methane and other gases, thus determining their lifetimes and oxidation products. Much of this oxidation occurs in the remote, relatively clean free troposphere above the planetary boundary layer, where the oxidation chemistry is thought to be much simpler and better understood than it is in urban regions or forests. The NASA airborne Atmospheric Tomography study (ATom) was designed to produce cross sections of the detailed atmospheric composition in the remote atmosphere over the Pacific and Atlantic Oceans during four seasons. As part of the extensive ATom data set, measurements of the atmosphere's primary oxidant, hydroxyl (OH), and hydroperoxyl (HO₂) are compared to a photochemical box model to test the oxidation chemistry. Generally, observed and modeled median OH and HO₂ agree to with combined uncertainties at the 2σ confidence level, which is ~±40%. For some seasons, this agreement is within ~±20% below 6 km altitude. While this test finds no significant differences, OH observations increasingly exceeded modeled values at altitudes above 8 km, becoming ~35% greater, which is near the combined uncertainties. Measurement uncertainty and possible unknown measurement errors complicate tests for unknown chemistry or incorrect reaction rate coefficients that would substantially affect the OH and HO₂ abundances. Future analysis of detailed comparisons may yield additional discrepancies that are masked in the median values

    Photooxidation of 2-methyl-3-buten-2-ol (MBO) as a potential source of secondary organic aerosol

    Get PDF
    2-Methyl-3-buten-2-ol (MBO) is an important biogenic hydrocarbon emitted in large quantities by pine forests. Atmospheric photooxidation of MBO is known to lead to oxygenated compounds, such as glycolaldehyde, which is the precursor to glyoxal. Recent studies have shown that the reactive uptake of glyoxal onto aqueous particles can lead to formation of secondary organic aerosol (SOA). In this work, MBO photooxidation under high- and low-NO_x conditions was performed in dual laboratory chambers to quantify the yield of glyoxal and investigate the potential for SOA formation. The yields of glycolaldehyde and 2-hydroxy-2-methylpropanal (HMPR), fragmentation products of MBO photooxidation, were observed to be lower at lower NO_x concentrations. Overall, the glyoxal yield from MBO photooxidation was 25% under high-NO_x and 4% under low-NO_x conditions. In the presence of wet ammonium sulfate seed and under high-NO_x conditions, glyoxal uptake and SOA formation were not observed conclusively, due to relatively low (<30 ppb) glyoxal concentrations. Slight aerosol formation was observed under low-NO_x and dry conditions, with aerosol mass yields on the order of 0.1%. The small amount of SOA was not related to glyoxal uptake, but is likely a result of reactions similar to those that generate isoprene SOA under low-NO_x conditions. The difference in aerosol yields between MBO and isoprene photooxidation under low-NO_x conditions is consistent with the difference in vapor pressures between triols (from MBO) and tetrols (from isoprene). Despite its structural similarity to isoprene, photooxidation of MBO is not expected to make a significant contribution to SOA formation

    α-pinene photooxidation under controlled chemical conditions – Part 2: SOA yield and composition in low- and high-NO_x environments

    Get PDF
    The gas-phase oxidation of α-pinene produces a large amount of secondary organic aerosol (SOA) in the atmosphere. A number of carboxylic acids, organosulfates and nitrooxy organosulfates associated with α-pinene have been found in field samples and some are used as tracers of α-pinene oxidation. α-pinene reacts readily with OH and O_3 in the atmosphere followed by reactions with both HO_2 and NO. Due to the large number of potential reaction pathways, it can be difficult to determine what conditions lead to SOA. To better understand the SOA yield and chemical composition from low- and high-NO_x OH oxidation of α-pinene, studies were conducted in the Caltech atmospheric chamber under controlled chemical conditions. Experiments used low O_3 concentrations to ensure that OH was the main oxidant and low α-pinene concentrations such that the peroxy radical (RO_2) reacted primarily with either HO_2 under low-NO_x conditions or NO under high-NO_x conditions. SOA yield was suppressed under conditions of high-NO_x. SOA yield under high-NO_x conditions was greater when ammonium sulfate/sulfuric acid seed particles (highly acidic) were present prior to the onset of growth than when ammonium sulfate seed particles (mildly acidic) were present; this dependence was not observed under low-NO_x conditions. When aerosol seed particles were introduced after OH oxidation, allowing for later generation species to be exposed to fresh inorganic seed particles, a number of low-NO_x products partitioned to the highly acidic aerosol. This indicates that the effect of seed acidity and SOA yield might be under-estimated in traditional experiments where aerosol seed particles are introduced prior to oxidation. We also identify the presence of a number of carboxylic acids that are used as tracer compounds of α-pinene oxidation in the field as well as the formation of organosulfates and nitrooxy organosulfates. A number of the carboxylic acids were observed under all conditions, however, pinic and pinonic acid were only observed under low-NO_x conditions. Evidence is provided for particle-phase sulfate esterification of multi-functional alcohols

    Measurement of atmospheric nitrous acid at Blodgett Forest during BEARPEX2007

    Get PDF
    Nitrous acid (HONO) is an important precursor of the hydroxyl radical (OH) in the lower troposphere. Understanding HONO chemistry, particularly its sources and contribution to HO_x (=OH+HO_2) production, is very important for understanding atmospheric oxidation processes. A highly sensitive instrument for detecting atmospheric HONO based on wet chemistry followed by liquid waveguide long path absorption photometry was deployed in the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) at Blodgett Forest, California in late summer 2007. The median diurnal variation shows minimum HONO levels of about 20–30 pptv during the day and maximum levels of about 60–70 pptv at night, a diurnal pattern quite different from the results at various other forested sites. Measured HONO/NO_2 ratios for a 24-h period ranged from 0.05 to 0.13 with a mean ratio of 0.07. Speciation of reactive nitrogen compounds (NO_y) indicates that HONO accounted for only ~3% of total NO_y. However, due to the fast HONO loss through photolysis, a strong HONO source (1.59 ppbv day^(−1)) existed in this environment in order to sustain the observed HONO levels, indicating the significant role of HONO in NO_y cycling. The wet chemistry HONO measurements were compared to the HONO measurements made with a Chemical Ionization Mass Spectrometer (CIMS) over a three-day period. Good agreement was obtained between the measurements from the two different techniques. Using the expansive suite of photochemical and meteorological measurements, the contribution of HONO photolysis to HO_x budget was calculated to be relatively small (6%) compared to results from other forested sites. The lower HONO mixing ratio and thus its smaller contribution to HO_x production are attributed to the unique meteorological conditions and low acid precipitation at Blodgett Forest. Further studies of HONO in this kind of environment are needed to test this hypothesis and to improve our understanding of atmospheric oxidation and nitrogen budget

    Unimolecular Reactions Following Indoor and Outdoor Limonene Ozonolysis

    Get PDF
    Limonene is one of the monoterpenes with the largest biogenic emissions and is also widely used as an additive in cleaning products, leading to significant indoor emissions. Studies have found that the formation of secondary organic aerosols (SOAs) from limonene oxidation has important implications for indoor air quality. Although ozonolysis is considered the major limonene oxidation pathway under most indoor conditions, little is known about the mechanisms for SOA formation from limonene ozonolysis. Here, we calculate the rate coefficients of the possible unimolecular reactions of the first-generation peroxy radicals formed by limonene ozonolysis using a high-level multiconformer transition state theory approach. We find that all of the peroxy radicals formed initially in the ozonolysis of limonene react unimolecularly with rates that are competitive both indoors and outdoors, except under highly polluted conditions. Differences in reactivity between the peroxy radicals from ozonolysis and those formed by OH, NO₃, and Cl oxidation are discussed. Finally, we sketch possible oxidation mechanisms for the different peroxy radicals under both indoor and pristine atmospheric conditions and in more polluted environments. In environments with low concentrations of HO₂ and NO, efficient autoxidation will lead to the formation of highly oxygenated organic compounds and thus likely aid in the growth of SOA

    Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: implications for oxidation of intermediate volatility organic compounds (IVOCs)

    Get PDF
    Current atmospheric models do not include secondary organic aerosol (SOA) production from gas-phase reactions of polycyclic aromatic hydrocarbons (PAHs). Recent studies have shown that primary emissions undergo oxidation in the gas phase, leading to SOA formation. This opens the possibility that low-volatility gas-phase precursors are a potentially large source of SOA. In this work, SOA formation from gas-phase photooxidation of naphthalene, 1-methylnaphthalene (1-MN), 2-methylnaphthalene (2- MN), and 1,2-dimethylnaphthalene (1,2-DMN) is studied in the Caltech dual 28-m^3 chambers. Under high-NO_x conditions and aerosol mass loadings between 10 and 40μgm^(−3), the SOA yields (mass of SOA per mass of hydrocarbon reacted) ranged from 0.19 to 0.30 for naphthalene, 0.19 to 0.39 for 1-MN, 0.26 to 0.45 for 2-MN, and constant at 0.31 for 1,2-DMN. Under low-NO_x conditions, the SOA yields were measured to be 0.73, 0.68, and 0.58, for naphthalene, 1- MN, and 2-MN, respectively. The SOA was observed to be semivolatile under high-NO_x conditions and essentially nonvolatile under low-NO_x conditions, owing to the higher fraction of ring-retaining products formed under low-NO_x conditions. When applying these measured yields to estimate SOA formation from primary emissions of diesel engines and wood burning, PAHs are estimated to yield 3–5 times more SOA than light aromatic compounds over photooxidation timescales of less than 12 h. PAHs can also account for up to 54% of the total SOA from oxidation of diesel emissions, representing a potentially large source of urban SOA

    Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals (NO_3)

    Get PDF
    Secondary organic aerosol (SOA) formation from the reaction of isoprene with nitrate radicals (NO3) is investigated in the Caltech indoor chambers. Experiments are performed in the dark and under dry conditions (RH<10%) using N2O5 as a source of NO3 radicals. For an initial isoprene concentration of 18.4 to 101.6 ppb, the SOA yield (defined as the ratio of the mass of organic aerosol formed to the mass of parent hydrocarbon reacted) ranges from 4.3% to 23.8%. By examining the time evolutions of gas-phase intermediate products and aerosol volume in real time, we are able to constrain the chemistry that leads to the formation of low-volatility products. Although the formation of ROOR from the reaction of two peroxy radicals (RO2) has generally been considered as a minor channel, based on the gas-phase and aerosol-phase data it appears that RO2+RO2 reaction (self reaction or cross-reaction) in the gas phase yielding ROOR products is a dominant SOA formation pathway. A wide array of organic nitrates and peroxides are identified in the aerosol formed and mechanisms for SOA formation are proposed. Using a uniform SOA yield of 10% (corresponding to Mo≅10 μg m−3), it is estimated that ~2 to 3 Tg yr−1 of SOA results from isoprene + NO3. The extent to which the results from this study can be applied to conditions in the atmosphere depends on the fate of peroxy radicals (i.e. the relative importance of RO2+RO2 versus RO2+NO3 reactions) in the nighttime troposphere

    Role of aldehyde chemistry and NO_x concentrations in secondary organic aerosol formation

    Get PDF
    Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene), the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA) via methacrolein (a C_4-unsaturated aldehyde) under urban high-NO_x conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN) as the important intermediate to isoprene and methacrolein SOA in this NO_x regime. Here we show that as a result of this chemistry, NO_2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NO_x effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO_2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232) is insignificant, even under high-NO_2 conditions, as PAN (peroxy acyl nitrate, RC(O)OONO_2) formation is structurally unfavorable. At atmospherically relevant NO_2/NO ratios (3–8), the SOA yields from isoprene high-NO_x photooxidation are 3 times greater than previously measured at lower NO_2/NO ratios. At sufficiently high NO_2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO_2 can exceed that from RO_2+HO_2 reactions under the same inorganic seed conditions, making RO_2+NO_2 an important channel for SOA formation
    corecore