219 research outputs found

    Seeking Salient Facial Regions for Cross-Database Micro-Expression Recognition

    Full text link
    Cross-Database Micro-Expression Recognition (CDMER) aims to develop the Micro-Expression Recognition (MER) methods with strong domain adaptability, i.e., the ability to recognize the Micro-Expressions (MEs) of different subjects captured by different imaging devices in different scenes. The development of CDMER is faced with two key problems: 1) the severe feature distribution gap between the source and target databases; 2) the feature representation bottleneck of ME such local and subtle facial expressions. To solve these problems, this paper proposes a novel Transfer Group Sparse Regression method, namely TGSR, which aims to 1) optimize the measurement and better alleviate the difference between the source and target databases, and 2) highlight the valid facial regions to enhance extracted features, by the operation of selecting the group features from the raw face feature, where each region is associated with a group of raw face feature, i.e., the salient facial region selection. Compared with previous transfer group sparse methods, our proposed TGSR has the ability to select the salient facial regions, which is effective in alleviating the aforementioned problems for better performance and reducing the computational cost at the same time. We use two public ME databases, i.e., CASME II and SMIC, to evaluate our proposed TGSR method. Experimental results show that our proposed TGSR learns the discriminative and explicable regions, and outperforms most state-of-the-art subspace-learning-based domain-adaptive methods for CDMER

    Learning Local to Global Feature Aggregation for Speech Emotion Recognition

    Full text link
    Transformer has emerged in speech emotion recognition (SER) at present. However, its equal patch division not only damages frequency information but also ignores local emotion correlations across frames, which are key cues to represent emotion. To handle the issue, we propose a Local to Global Feature Aggregation learning (LGFA) for SER, which can aggregate longterm emotion correlations at different scales both inside frames and segments with entire frequency information to enhance the emotion discrimination of utterance-level speech features. For this purpose, we nest a Frame Transformer inside a Segment Transformer. Firstly, Frame Transformer is designed to excavate local emotion correlations between frames for frame embeddings. Then, the frame embeddings and their corresponding segment features are aggregated as different-level complements to be fed into Segment Transformer for learning utterance-level global emotion features. Experimental results show that the performance of LGFA is superior to the state-of-the-art methods.Comment: This paper has been accepted on INTERSPEECH 202

    SDFE-LV: A Large-Scale, Multi-Source, and Unconstrained Database for Spotting Dynamic Facial Expressions in Long Videos

    Full text link
    In this paper, we present a large-scale, multi-source, and unconstrained database called SDFE-LV for spotting the onset and offset frames of a complete dynamic facial expression from long videos, which is known as the topic of dynamic facial expression spotting (DFES) and a vital prior step for lots of facial expression analysis tasks. Specifically, SDFE-LV consists of 1,191 long videos, each of which contains one or more complete dynamic facial expressions. Moreover, each complete dynamic facial expression in its corresponding long video was independently labeled for five times by 10 well-trained annotators. To the best of our knowledge, SDFE-LV is the first unconstrained large-scale database for the DFES task whose long videos are collected from multiple real-world/closely real-world media sources, e.g., TV interviews, documentaries, movies, and we-media short videos. Therefore, DFES tasks on SDFE-LV database will encounter numerous difficulties in practice such as head posture changes, occlusions, and illumination. We also provided a comprehensive benchmark evaluation from different angles by using lots of recent state-of-the-art deep spotting methods and hence researchers interested in DFES can quickly and easily get started. Finally, with the deep discussions on the experimental evaluation results, we attempt to point out several meaningful directions to deal with DFES tasks and hope that DFES can be better advanced in the future. In addition, SDFE-LV will be freely released for academic use only as soon as possible

    Super-Resolution by Predicting Offsets: An Ultra-Efficient Super-Resolution Network for Rasterized Images

    Full text link
    Rendering high-resolution (HR) graphics brings substantial computational costs. Efficient graphics super-resolution (SR) methods may achieve HR rendering with small computing resources and have attracted extensive research interests in industry and research communities. We present a new method for real-time SR for computer graphics, namely Super-Resolution by Predicting Offsets (SRPO). Our algorithm divides the image into two parts for processing, i.e., sharp edges and flatter areas. For edges, different from the previous SR methods that take the anti-aliased images as inputs, our proposed SRPO takes advantage of the characteristics of rasterized images to conduct SR on the rasterized images. To complement the residual between HR and low-resolution (LR) rasterized images, we train an ultra-efficient network to predict the offset maps to move the appropriate surrounding pixels to the new positions. For flat areas, we found simple interpolation methods can already generate reasonable output. We finally use a guided fusion operation to integrate the sharp edges generated by the network and flat areas by the interpolation method to get the final SR image. The proposed network only contains 8,434 parameters and can be accelerated by network quantization. Extensive experiments show that the proposed SRPO can achieve superior visual effects at a smaller computational cost than the existing state-of-the-art methods.Comment: This article has been accepted by ECCV202

    Layer-Adapted Implicit Distribution Alignment Networks for Cross-Corpus Speech Emotion Recognition

    Full text link
    In this paper, we propose a new unsupervised domain adaptation (DA) method called layer-adapted implicit distribution alignment networks (LIDAN) to address the challenge of cross-corpus speech emotion recognition (SER). LIDAN extends our previous ICASSP work, deep implicit distribution alignment networks (DIDAN), whose key contribution lies in the introduction of a novel regularization term called implicit distribution alignment (IDA). This term allows DIDAN trained on source (training) speech samples to remain applicable to predicting emotion labels for target (testing) speech samples, regardless of corpus variance in cross-corpus SER. To further enhance this method, we extend IDA to layer-adapted IDA (LIDA), resulting in LIDAN. This layer-adpated extention consists of three modified IDA terms that consider emotion labels at different levels of granularity. These terms are strategically arranged within different fully connected layers in LIDAN, aligning with the increasing emotion-discriminative abilities with respect to the layer depth. This arrangement enables LIDAN to more effectively learn emotion-discriminative and corpus-invariant features for SER across various corpora compared to DIDAN. It is also worthy to mention that unlike most existing methods that rely on estimating statistical moments to describe pre-assumed explicit distributions, both IDA and LIDA take a different approach. They utilize an idea of target sample reconstruction to directly bridge the feature distribution gap without making assumptions about their distribution type. As a result, DIDAN and LIDAN can be viewed as implicit cross-corpus SER methods. To evaluate LIDAN, we conducted extensive cross-corpus SER experiments on EmoDB, eNTERFACE, and CASIA corpora. The experimental results demonstrate that LIDAN surpasses recent state-of-the-art explicit unsupervised DA methods in tackling cross-corpus SER tasks
    corecore