83 research outputs found

    IGF2BP2 Overexpression Indicates Poor Survival in Patients with Acute Myelocytic Leukemia

    Get PDF
    Background/Aims: IGF2BP2 has been reported to serve as an oncogene in various solid cancers. However, the role of IGF2BP2 in acute myelocytic leukemia (AML) is still unknown. Methods: Public databases Gene Omnibus was used to evaluate the expression of IGF2BP2 in AML patients and healthy controls. In addition, primary cells from these two populations were prepared by Ficoll density centrifugation. Rt-qPCR and western blot were used to detect IGF2BP2 expression in the primary cells from these two populations. Meta-analysis was performed to evaluate the association of IGF2BP2 and prognosis. Lentivirus-based shRNAs were used to knock down IGF2BP2 in AML cell lines KG-1a and Kasumi. Results: We searched the public database Gene Omnibus and analyzed IGF2BP2 expression in both AML and healthy populations. The results showed that IGF2BP2 was overexpressed in AML patients. To verify this phenomenon in fresh human samples, we compared the expression of IGF2BP2 in primary cells from 10 AML patients and 10 healthy controls and found that the expression of IGF2BP2 was upregulated in AML primary cells. More importantly, we observed that IGF2BP2 expression was negatively correlated with the CEBPA mutation status, which is an indicator of good prognosis (RR=0.648, p=0.0001). In addition, IGF2BP2 expression was positively associated with poor prognostic factors, such as the FLT3-ITD mutation (RR=1.198, p=0.0009) and IDH1 mutation (RR=1.354, p=0.0003), as well as intermediate and poor cytogenetic risk (RR=1.214, p=0.0026). To evaluate the prognostic value of IGF2BP2 in AML, we further performed a meta-analysis of 8 studies consisting of 1731 patients and found that IGF2BP2 overexpression was correlated with worse overall survival in AML patients [HR=1.31(1.16-1.49); p = 0.00]. Furthermore, we performed Gene Omnibus and Gene Set Enrichment analyses and found that the genes regulated by IGF2BP2 were mainly enriched in cell proliferation. IGF2BP2 knockdown by 4 different shRNA vectors significantly inhibited the growth of two AML cell lines, KG-1a and Kasumi. Conclusion: Thus, IGF2BP2 may serve as a biomarker to predict the prognosis of AML and as a potential target in AML

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Characterization of a Novel Humanized Anti-CD20 Antibody with Potent Anti-Tumor Activity against Non-Hodgkin's Lymphoma

    No full text
    Background: Rituximab, a mouse Fab and human Fc chimeric antibody, has been widely used to treat Non-Hodgkin's lymphoma (NHL). However, only 48% of patients respond to the treatment and complete response rate is below 10%. Also, immunogenicity was reported in 17-20% patients receiving the treatment, making it unsuitable for long term diseases such as autoimmune disorders. It has been a hot research field to “humanize” rituximab toward improved efficacy and reduced immunogenicity. Methods: In this study, an advanced antibody humanization technology was applied to the sequence of the anti-CD20 antibody 2B8, its sequence of which was based on the original murine monoclonal antibody of rituximab in Roche. The complementarity-determining regions (CDRs) of the humanized antibodies were further optimized through computer-aided molecular dock. Results: Five novel humanized anti-CD20 antibodies 1-5(1635, 1534, 3637, 1634 and 1536) were generated and their immunogenicity was significantly decreased when compared to rituximab. The novel humanized anti-CD20 antibodies 1-5 retained the binding activity of their murine counterpart, as demonstrated by the fluorescence-activated cell-sorting analysis (FACS). When compared to rituximab, the humanized antibodies still have the similar properties on both complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC). Furthermore, its anti-tumor efficacy in xenograft model is comparable to that of rituximab. Conclusion: The humanized anti-CD20 antibodies 1-5 have lower immunogenicity than rituximab. And at the same time, they still retain the anti-tumor effect both in vitro and vivo

    PCK1 negatively regulates cell cycle progression and hepatoma cell proliferation via the AMPK/p27Kip1 axis

    No full text
    Abstract Background Altered glucose metabolism endows tumor cells with metabolic flexibility for biosynthesis requirements. Phosphoenolpyruvate carboxykinase 1 (PCK1), a key enzyme in the gluconeogenesis pathway, is downregulated in hepatocellular carcinoma (HCC) and predicts poor prognosis. Overexpression of PCK1 has been shown to suppress liver tumor growth, but the underlying mechanism remains unclear. Methods mRNA and protein expression patterns of PCK1, AMPK, pAMPK, and the CDK/Rb/E2F pathway were determined using qRT-PCR and western blotting. Cell proliferation ability and cell cycle were assessed by MTS assay and flow cytometric analysis. The effect of PCK1 on tumor growth was examined in xenograft implantation models. Results Both gain and loss-of-function experiments demonstrated that PCK1 deficiency promotes hepatoma cell proliferation through inactivation of AMPK, suppression of p27Kip1 expression, and stimulation of the CDK/Rb/E2F pathway, thereby accelerating cell cycle transition from the G1 to S phase under glucose-starved conditions. Overexpression of PCK1 reduced cellular ATP levels and enhanced AMPK phosphorylation and p27Kip1 expression but decreased Rb phosphorylation, leading to cell cycle arrest at G1. AMPK knockdown significantly reversed G1-phase arrest and growth inhibition of PCK1-expressing SK-Hep1 cells. In addition, the AMPK activator metformin remarkably suppressed the growth of PCK1-knockout PLC/PRF/5 cells and inhibited tumor growth in an orthotropic HCC mouse model. Conclusion This study revealed that PCK1 negatively regulates cell cycle progression and hepatoma cell proliferation via the AMPK/p27Kip1 axis and supports a potential therapeutic and protective effect of metformin on HCC
    • …
    corecore