512 research outputs found

    Real-Time Misbehavior Detection in IEEE 802.11e Based WLANs

    Full text link
    The Enhanced Distributed Channel Access (EDCA) specification in the IEEE 802.11e standard supports heterogeneous backoff parameters and arbitration inter-frame space (AIFS), which makes a selfish node easy to manipulate these parameters and misbehave. In this case, the network-wide fairness cannot be achieved any longer. Many existing misbehavior detectors, primarily designed for legacy IEEE 802.11 networks, become inapplicable in such a heterogeneous network configuration. In this paper, we propose a novel real-time hybrid-share (HS) misbehavior detector for IEEE 802.11e based wireless local area networks (WLANs). The detector keeps updating its state based on every successful transmission and makes detection decisions by comparing its state with a threshold. We develop mathematical analysis of the detector performance in terms of both false positive rate and average detection rate. Numerical results show that the proposed detector can effectively detect both contention window based and AIFS based misbehavior with only a short detection window.Comment: Accepted to IEEE Globecom 201

    Automatic Generation of High-Coverage Tests for RTL Designs using Software Techniques and Tools

    Full text link
    Register Transfer Level (RTL) design validation is a crucial stage in the hardware design process. We present a new approach to enhancing RTL design validation using available software techniques and tools. Our approach converts the source code of a RTL design into a C++ software program. Then a powerful symbolic execution engine is employed to execute the converted C++ program symbolically to generate test cases. To better generate efficient test cases, we limit the number of cycles to guide symbolic execution. Moreover, we add bit-level symbolic variable support into the symbolic execution engine. Generated test cases are further evaluated by simulating the RTL design to get accurate coverage. We have evaluated the approach on a floating point unit (FPU) design. The preliminary results show that our approach can deliver high-quality tests to achieve high coverage

    Modeling and Analysis of Bifurcation in a Delayed Worm Propagation Model

    Get PDF
    A delayed worm propagation model with birth and death rates is formulated. The stability of the positive equilibrium is studied. Through theoretical analysis, a critical value Ï„0 of Hopf bifurcation is derived. The worm propagation system is locally asymptotically stable when time delay is less than Ï„0. However, Hopf bifurcation appears when time delay Ï„ passes the threshold Ï„0, which means that the worm propagation system is unstable and out of control. Consequently, time delay should be adjusted to be less than Ï„0 to ensure the stability of the system stable and better prediction of the scale and speed of Internet worm spreading. Finally, numerical and simulation experiments are presented to simulate the system, which fully support our analysis

    Giant supercurrent states in a superconductor-InAs/GaSb-superconductor junction

    Full text link
    Superconductivity in topological materials has attracted a great deal of interest in both electron physics and material sciences since the theoretical predictions that Majorana fermions can be realized in topological superconductors [1-4]. Topological superconductivity could be realized in a type II, band-inverted, InAs/GaSb quantum well if it is in proximity to a conventional superconductor. Here we report observations of the proximity effect induced giant supercurrent states in an InAs/GaSb bilayer system that is sandwiched between two superconducting tantalum electrodes to form a superconductor-InAs/GaSb-superconductor junction. Electron transport results show that the supercurrent states can be preserved in a surprisingly large temperature-magnetic field (T-H) parameter space. In addition, the evolution of differential resistance in T and H reveals an interesting superconducting gap structure

    Symbol as Points: Panoptic Symbol Spotting via Point-based Representation

    Full text link
    This work studies the problem of panoptic symbol spotting, which is to spot and parse both countable object instances (windows, doors, tables, etc.) and uncountable stuff (wall, railing, etc.) from computer-aided design (CAD) drawings. Existing methods typically involve either rasterizing the vector graphics into images and using image-based methods for symbol spotting, or directly building graphs and using graph neural networks for symbol recognition. In this paper, we take a different approach, which treats graphic primitives as a set of 2D points that are locally connected and use point cloud segmentation methods to tackle it. Specifically, we utilize a point transformer to extract the primitive features and append a mask2former-like spotting head to predict the final output. To better use the local connection information of primitives and enhance their discriminability, we further propose the attention with connection module (ACM) and contrastive connection learning scheme (CCL). Finally, we propose a KNN interpolation mechanism for the mask attention module of the spotting head to better handle primitive mask downsampling, which is primitive-level in contrast to pixel-level for the image. Our approach, named SymPoint, is simple yet effective, outperforming recent state-of-the-art method GAT-CADNet by an absolute increase of 9.6% PQ and 10.4% RQ on the FloorPlanCAD dataset. The source code and models will be available at https://github.com/nicehuster/SymPoint.Comment: ICLR 202
    • …
    corecore