24 research outputs found

    CXCL13/CXCR5 Axis Predicts Poor Prognosis and Promotes Progression Through PI3K/AKT/mTOR Pathway in Clear Cell Renal Cell Carcinoma

    Get PDF
    The chemokine ligands and their receptors play critical roles in cancer progression and patients outcomes. We found that CXCL13 was significantly upregulated in ccRCC tissues compared with normal tissues in both The Cancer Genome Atlas (TCGA) cohort and a validated cohort of 90 pairs ccRCC tissues. Statistical analysis showed that high CXCL13 expression related to advanced disease stage and poor prognosis in ccRCC. We also revealed that serum CXCL13 levels in ccRCC patients (n = 50) were significantly higher than in healthy controls (n = 40). Receiver operating characteristic (ROC) curve revealed that tissue and serum CXCL13 expression might be a diagnostic biomarker for ccRCC with an area under curve (AUC) of 0.809 and 0.704, respectively. CXCL13 was significantly associated with its receptor, CXCR5, in ccRCC tissues, and ccRCC patients in high CXCL13 high CXCR5 expression group have a worst prognosis. Functional and mechanistic study revealed that CXCL13 promoted the proliferation and migration of ccRCC cells by binding to CXCR5 and activated PI3K/AKT/mTOR signaling pathway. These results suggested that CXCL13/CXCR5 axis played a significant role in ccRCC and might be a therapeutic target and prognostic biomarker

    Knockdown of a novel lincRNA AATBC suppresses proliferation and induces apoptosis in bladder cancer

    Full text link
    Long intergenic noncoding RNAs (lincRNAs) play important roles in regulating various biological processes in cancer, including proliferation and apoptosis. However, the roles of lincRNAs in bladder cancer remain elusive. In this study, we identified a novel lincRNA, which we termed AATBC. We found that AATBC was overexpressed in bladder cancer patient tissues and positively correlated with tumor grade and pT stage. We also found that inhibition of AATBC resulted in cell proliferation arrest through G1 cell cycle mediated by cyclin D1, CDK4, p18 and phosphorylated Rb. In addition, inhibition of AATBC induced cell apoptosis through the intrinsic apoptosis signaling pathway, as evidenced by the activation of caspase-9 and caspase-3. The investigation for the signaling pathway revealed that the apoptosis following AATBC knockdown was mediated by activation of phosphorylated JNK and suppression of NRF2. Furthermore, JNK inhibitor SP600125 could attenuate the apoptotic effect achieved by AATBC knockdown, confirming the involvement of JNK signaling in the induced apoptosis. Moreover, mouse xenograft model revealed that knockdown of AATBC led to suppress tumorigenesis in vivo. Taken together, our study indicated that AATBC might play a critical role in pro-proliferation and anti-apoptosis in bladder cancer by regulating cell cycle, intrinsic apoptosis signaling, JNK signaling and NRF2. AATBC could be a potential therapeutic target and molecular biomarker for bladder cancer

    Long Non-Coding RNA LUCAT1 Promotes Proliferation and Invasion in Clear Cell Renal Cell Carcinoma Through AKT/GSK-3β Signaling Pathway

    Get PDF
    Background/Aims: Long non-coding RNAs (lncRNAs) have emerged as new regulators and biomarkers in several cancers. However, few lncRNAs have been well characterized in clear cell renal cell carcinoma (ccRCC). Methods: We investigated the lncRNA expression profile by microarray analysis in 5 corresponding ccRCC tissues and adjacent normal tissues. Lung cancer–associated transcript 1 (LUCAT1) expression was examined in 90 paired ccRCC tissues by real-time PCR and validated by The Cancer Genome Atlas (TCGA) database. Kaplan-Meier analysis was used to examine the prognostic value of LUCAT1 and CXCL2 in ccRCC patients. Loss and gain of function were performed to explore the effect of LUCAT1 on proliferation and invasion in ccRCC cells. Western blotting was performed to evaluate the underlying mechanisms of LUCAT1 in ccRCC progression. Chemokine stimulation assay was performed to investigate possible mechanisms controlling LUCAT1 expression in ccRCC cells. Enzyme-linked immunosorbent assays were performed to determine serum CXCL2 in ccRCC patients and healthy volunteers. Receiver operating characteristic curve analysis was performed to examine the clinical diagnostic value of serum CXCL2 in ccRCC. Results: We found that LUCAT1 was significantly upregulated in both clinical ccRCC tissues (n = 90) and TCGA ccRCC tissues (n = 448) compared with normal tissues. Statistical analysis revealed that the LUCAT1 expression level positively correlated with tumor T stage (P < 0.01), M stage (P < 0.01), and TNM stage (P < 0.01). Overall survival and disease-free survival time were significantly shorter in the high-LUCAT1-expression group than in the low-LUCAT1-expression group (log-rank P < 0.01). LUCAT1 knockdown inhibited ccRCC cell proliferation and colony formation, induced cell cycle arrest at G1 phase, and inhibited cell migration and invasion. Overexpression of LUCAT1 promoted proliferation, migration, and invasion of ccRCC cells. Mechanistic investigations showed that LUCAT1 induced cell cycle G1 arrest by regulating the expression of cyclin D1, cyclin-dependent kinase 4, and phosphorylated retinoblastoma transcriptional corepressor 1. Moreover, LUCAT1 promoted proliferation and invasion in ccRCC cells partly through inducing the phosphorylation of AKT and suppressing the phosphorylation of GSK-3β. We also revealed that chemokine CXCL2, upregulated in ccRCC, induced LUCAT1 expression and might be a diagnostic and prognostic biomarker in ccRCC. Conclusions: LUCAT1 was upregulated in ccRCC tissues and renal cancer cell lines, and significantly correlated with malignant stage and poor prognosis in ccRCC. LUCAT1 promoted proliferation and invasion in ccRCC cells through the AKT/GSK-3β signaling pathway. We also revealed that LUCAT1 overexpression was induced by chemokine CXCL2. These findings indicate that the CXCL2/LUCAT1/AKT/GSK-3β axis is a potential therapeutic target and molecular biomarker for ccRCC

    A novel DIC-based methodology for crack identification in a jointed rock mass

    No full text
    Crack identification in brittle rocks is a challenging problem in rock mechanics. To represent the details of jointed rock masses, rock-like specimens containing inclined joint sets were generally prepared by three-dimensional (3D) printing using sand. Digital image correlation (DIC) was employed for full-field deformation measurement during loading. The results show that the sand 3D-printed specimen has distinct advantages in the preparation of jointed rock masses. DIC was extended to measure the displacement vector field around newly propagated cracks. Two types of cracks are recognized: tensile and shear cracks. Two different coalescence patterns are classified: step-path failure and planar failure. A covariance matrix-based multivariate measure, the rate of effective variance change (REVC), was proposed to quantify the dispersion of strain data. The variation in the strain dispersion measure was found to be closely related to the crack type. For the first occurrence of tensile and shear cracks, the rates of mutation (RMs) are within the ranges of 1.56–3.42 and 14.54–86.44, respectively, which can be considered a new crack identification criterion. A virtual extensometer method based on DIC was established to interpret the variation mechanism of the REVC associated with different crack types

    bHLH genes cath5 and cNSCL1 promote bFGF-stimulated RPE cells to transdifferentiate toward retinal ganglion cells

    Get PDF
    AbstractThe molecular mechanism of retinal ganglion cell (RGC) genesis and development is not well understood. Published data suggest that the process may involve two bHLH genes, ath5 and NSCL1. Gain-of-function studies show that ath5 increases RGC production in the developing retina. We examined whether two chick genes, cath5 and cNSCL1, can guide retinal pigment epithelial (RPE) cells to transdifferentiate toward RGCs. Ectopic expression of cath5 and cNSCL1 in cultured chick RPE cells was achieved through retroviral transduction. cath5 alone was unable to induce de novo expression of early RGC markers, such as RA4 antigen, neurofilament (160 kDa), and a neurofilament-associated antigen. However, cath5 induced the expression of these proteins when the RPE cells were cultured with medium supplemented with bFGF. Since bFGF alone can induce only RA4 antigen, the expression of the additional RGC markers reflects a synergism between cath5 and bFGF in promoting RPE transdifferentiation toward RGCs. Morphologically, the RA4+ cells in bFGF + cath5 cultures appeared more neuron-like than those generated by bFGF alone. cNSCL1 also promoted bFGF-stimulated RPE cells to transdifferentiate toward RGCs that expressed RA4 antigen, N-CAM, Islet-1, neurofilament, and neurofilament-associated antigen. We found that cath5 induced cNSCL1 expression, but not vice versa. Our data suggest that cath5 or cNSCL1 alone was insufficient to induce RPE transdifferentiation into RGCs, but could further neural differentiation initiated by bFGF. We propose that intrinsic factors act synergistically with extrinsic factors during RGC genesis and development

    Investigation of the Effects of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) on Apoptosis and Cell Cycle in a Zebrafish (Danio rerio) Liver Cell Line

    No full text
    This study aimed to explore the effects of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) on apoptosis and cell cycle in a zebrafish (Danio rerio) liver cell line (ZFL). Treatment groups included a control group, PFOA-IC50, PFOA-IC80, PFOS-IC50 and PFOS-IC80 groups. IC50 and IC80 concentrations were identified by cellular modeling and MTT assays. mRNA levels of p53, Bcl-2, Bax, Caspase-3 and NF-ÎşB p65 were detected by qPCR. Cell apoptosis and cell cycle were detected by flow cytometry and the protein levels of p53, Bcl-2, Bax, Caspase-3 and NF-ÎşB p65 were determined by western blotting. Both PFOA and PFOS inhibited the growth of zebrafish liver cells, and the inhibition rate of PFOS was higher than that of PFOA. Bcl-2 expression levels in the four groups were significantly higher than the control group and Bcl-2 increased significantly in the PFOA-IC80 group. However, the expression levels of Bax in the four treatment groups were higher than the control group. The percentage of cell apoptosis increased significantly with the treatment of PFOA and PFOS (p < 0.05). Cell cycle and cell proliferation were blocked in both the PFOA-IC80 and PFOS-IC80 groups, indicating that PFOA-IC80 and PFOS-IC50 enhanced apoptosis in ZFL cells

    Contemporary Research Progress on the Detection of Polycyclic Aromatic Hydrocarbons

    No full text
    Polycyclic aromatic hydrocarbons (PAHs) are a class of the most common and widespread contaminants. The accumulation of PAHs has made a certain impact on the environment and is seriously threatening human health. Numerous general analytical methods suitable for PAHs were developed. With the development of economy, the environmental problems of PAHs in modern society are more extensive and prominent, and attract more attention from environmental scientists and analysts. Deeper understanding of the properties of PAHs depends on the advent of detection methods, which can also be more conducive to promoting the protection of the environment. Till now, more sensitive, more high-speed and more high-throughput analytical tools are being invented and have played important roles in the research of PAHs. In this short review article, we focused mainly on the contemporary analytical methods about PAHs. We started with a brief review on the hazards, migration, distribution and traditional analysis methods of PAHs in recent years, including liquid chromatography, gas chromatography, surface enhanced Raman spectroscopy and so on. We also presented the applications of the modern ambient mass spectrometry, especially microwave plasma torch mass spectrometry, in the detection of PAHs, as well as the far out novel results in our lab by using microwave plasma torch (MPT) mass spectrometry; for example, some new insights about Birch reduction, regular hydrogen addition and the robustness of molecular structure. These studies have demonstrated the versatility of MPT MS as a platform in the research of PAHs
    corecore