172 research outputs found

    Enabling Large Language Models to Learn from Rules

    Full text link
    Large language models (LLMs) have shown incredible performance in completing various real-world tasks. The current knowledge learning paradigm of LLMs is mainly based on learning from examples, in which LLMs learn the internal rule implicitly from a certain number of supervised examples. However, the learning paradigm may not well learn those complicated rules, especially when the training examples are limited. We are inspired that humans can learn the new tasks or knowledge in another way by learning from rules. That is, humans can grasp the new tasks or knowledge quickly and generalize well given only a detailed rule and a few optional examples. Therefore, in this paper, we aim to explore the feasibility of this new learning paradigm, which encodes the rule-based knowledge into LLMs. We propose rule distillation, which first uses the strong in-context abilities of LLMs to extract the knowledge from the textual rules and then explicitly encode the knowledge into LLMs' parameters by learning from the above in-context signals produced inside the model. Our experiments show that making LLMs learn from rules by our method is much more efficient than example-based learning in both the sample size and generalization ability.Comment: In progres

    Inhibition of HSP90 promotes neural stem cell survival from oxidative stress through attenuating NF-κB/p65 activation

    Get PDF
    Stem cell survival post transplantation determines the efficiency of stem cell treatment, which develops as a novel potential therapy for several central nervous system (CNS) diseases in recent decades of yeas. The engrafted stem cells face the damage of oxidative stress, inflammation and immune response at the lesion point in host. Among the pathology, oxidative stress directs stem cells to apoptosis and even death through several signalling pathways and DNA damage. However, the in detail mechanism of stem cell survival from oxidative stress has not revealed clearly. Here in this study, we used hydrogen peroxide (H2O2) to induced the oxidative damage on neural stem cells (NSCs). The damage was in consequence demonstrated involving the activation of heat shock protein 90 (HSP90) and NF-κB/p65 signalling pathways. Further application of the pharmacological inhibitors respectively targeting at each signalling indicated an upper streaming role of HSP90 upon NF-κB/p65 on NSCs survival. Pre-inhibition of HSP90 with the specific inhibitor displayed a significant protection on NSCs against oxidative stress. In conclusion, inhibition of HSP90 would attenuate NF-κB/p65 activation by oxidative induction and promote NSCs survival from oxidative damage. The HSP90/NF-κB mechanism provides a new evidence on rescuing NSCs from oxidative stress, and also promotes the stem cell application on CNS pathologies

    Inhibition of HSP90 Promotes Neural Stem Cell Survival from Oxidative Stress through Attenuating NF- κ

    Get PDF
    Stem cell survival after transplantation determines the efficiency of stem cell treatment, which develops as a novel potential therapy for several central nervous system (CNS) diseases in recent decades. The engrafted stem cells face the damage of oxidative stress, inflammation, and immune response at the lesion point in host. Among the damaging pathologies, oxidative stress directs stem cells to apoptosis and even death through several signalling pathways and DNA damage. However, the in-detail mechanism of stem cell survival from oxidative stress has not been revealed clearly. Here, in this study, we used hydrogen peroxide (H2O2) to induce the oxidative damage on neural stem cells (NSCs). The damage was in consequence demonstrated involving the activation of heat shock protein 90 (HSP90) and NF-κB/p65 signalling pathways. Further application of the pharmacological inhibitors, respectively, targeting at each signalling indicated an upper-stream role of HSP90 upon NF-κB/p65 on NSCs survival. Preinhibition of HSP90 with the specific inhibitor displayed a significant protection on NSCs against oxidative stress. In conclusion, inhibition of HSP90 would attenuate NF-κB/p65 activation by oxidative induction and promote NSCs survival from oxidative damage. The HSP90/NF-κB mechanism provides a new evidence on rescuing NSCs from oxidative stress and also promotes the stem cell application on CNS pathologies

    Securing higher-quality data from self-administered questionnaires

    Get PDF
    No abstract available

    Eight-input optical programmable logic array enabled by parallel spectrum modulation

    Full text link
    Despite over 40 years' development of optical logic computing, the studies have been still struggling to support more than four operands, since the high parallelism of light has not been fully leveraged blocked by the optical nonlinearity and redundant input modulation in existing methods. Here, we propose a scalable multi-input optical programmable logic array (PLA) with minimal logical input, enabled by parallel spectrum modulation. By making full use of the wavelength resource, an eight-input PLA is experimentally demonstrated, and there are 2^256 possible combinations of generated logic gates. Various complex logic fuctions, such as 8-256 decoder, 4-bit comparator, adder and multiplier are experimentally demonstrated via leveraging the PLA. The scale of PLA can be further extended by fully using the dimensions of wavelength and space. As an example, a nine-input PLA is implemented to realize the two-dimensional optical cellular automaton for the first time and perform Conway's Game of Life to simulate the evolutionary process of cells. Our work significantly alleviates the challenge of extensibility of optical logic devices, opening up new avenues for future large-scale, high-speed and energy-efficient optical digital computing

    Simultaneous improvement of heating efficiency and mechanical strength of a self-healing thermoplastic polymer by hybridizing magnetic particles with conductive fibres

    Get PDF
    Radio-Frequency (RF) induction heating is a versatile in-situ method for contactless heating of structures by utilizing either magnetic hysteresis loss or eddy-current loss mechanism. Achieving high heating efficiency without degrading mechanical properties is a major challenge. Herein, a RF induction compatible self-healing composite was developed by hybridizing iron oxides (Fe3O4) nanoparticles with carbon fibre veils (CFVs) in poly(ethylene-co-methacrylic acid) (EMAA), which could possess both high magnetic and electrical properties. Owing to the multiscale conductive networks built by Fe3O4 nanoparticles and CFVs, the electrical conductivity of the nanocomposite was found to be higher than the linear combination of the individual contributions, thus creating a synergistic improvement in electrical conductivity and heating efficiency. Furthermore, single lap shear test results demonstrated that the combination of Fe3O4 nanoparticles and CFVs could significantly improve the bonding strength of EMAA polymer. Therefore, the hybridization of magnetic particles with conductive fibres offers a promising technology for a wide range of applications, such as self-healing, reversable bonding, and multiple use bonded composites

    Inhibition of HSP90 promotes neural stem cell survival from oxidative stress through attenuating NF-κB/p65 activation

    Get PDF
    Stem cell survival post transplantation determines the efficiency of stem cell treatment, which develops as a novel potential therapy for several central nervous system (CNS) diseases in recent decades of yeas. The engrafted stem cells face the damage of oxidative stress, inflammation and immune response at the lesion point in host. Among the pathology, oxidative stress directs stem cells to apoptosis and even death through several signalling pathways and DNA damage. However, the in detail mechanism of stem cell survival from oxidative stress has not revealed clearly. Here in this study, we used hydrogen peroxide (H2O2) to induced the oxidative damage on neural stem cells (NSCs). The damage was in consequence demonstrated involving the activation of heat shock protein 90 (HSP90) and NF-κB/p65 signalling pathways. Further application of the pharmacological inhibitors respectively targeting at each signalling indicated an upper streaming role of HSP90 upon NF-κB/p65 on NSCs survival. Pre-inhibition of HSP90 with the specific inhibitor displayed a significant protection on NSCs against oxidative stress. In conclusion, inhibition of HSP90 would attenuate NF-κB/p65 activation by oxidative induction and promote NSCs survival from oxidative damage. The HSP90/NF-κB mechanism provides a new evidence on rescuing NSCs from oxidative stress, and also promotes the stem cell application on CNS pathologies

    Large and tunable magnetoresistance in van der Waals Ferromagnet/Semiconductor junctions

    Full text link
    Magnetic tunnel junctions (MTJs) with conventional bulk ferromagnets separated by a nonmagnetic insulating layer are key building blocks in spintronics for magnetic sensors and memory. A radically different approach of using atomically-thin van der Waals (vdW) materials in MTJs is expected to boost their figure of merit, the tunneling magnetoresistance (TMR), while relaxing the lattice-matching requirements from the epitaxial growth and supporting high-quality integration of dissimilar materials with atomically-sharp interfaces. We report TMR up to 192% at 10 K in all-vdW Fe3GeTe2/GaSe/Fe3GeTe2 MTJs. Remarkably, instead of the usual insulating spacer, this large TMR is realized with a vdW semiconductor GaSe. Integration of two-dimensional ferromagnets in semiconductor-based vdW junctions offers gate-tunability, bias dependence, magnetic proximity effects, and spin-dependent optical-selection rules. We demonstrate that not just the magnitude, but also the TMR sign is tuned by the applied bias or the semiconductor thickness, enabling modulation of highly spin-polarized carriers in vdW semiconductors
    • …
    corecore