373 research outputs found

    Comparative Study of Different Methods in Vibration-Based Terrain Classification for Wheeled Robots with Shock Absorbers

    Get PDF
    open access articleAutonomous robots that operate in the field can enhance their security and efficiency by accurate terrain classification, which can be realized by means of robot-terrain interaction-generated vibration signals. In this paper, we explore the vibration-based terrain classification (VTC), in particular for a wheeled robot with shock absorbers. Because the vibration sensors are usually mounted on the main body of the robot, the vibration signals are dampened significantly, which results in the vibration signals collected on different terrains being more difficult to discriminate. Hence, the existing VTC methods applied to a robot with shock absorbers may degrade. The contributions are two-fold: (1) Several experiments are conducted to exhibit the performance of the existing feature-engineering and feature-learning classification methods; and (2) According to the long short-term memory (LSTM) network, we propose a one-dimensional convolutional LSTM (1DCL)-based VTC method to learn both spatial and temporal characteristics of the dampened vibration signals. The experiment results demonstrate that: (1) The feature-engineering methods, which are efficient in VTC of the robot without shock absorbers, are not so accurate in our project; meanwhile, the feature-learning methods are better choices; and (2) The 1DCL-based VTC method outperforms the conventional methods with an accuracy of 80.18%, which exceeds the second method (LSTM) by 8.23%

    A Blockchain-Based Retribution Mechanism for Collaborative Intrusion Detection

    Get PDF
    Collaborative intrusion detection approach uses the shared detection signature between the collaborative participants to facilitate coordinated defense. In the context of collaborative intrusion detection system (CIDS), however, there is no research focusing on the efficiency of the shared detection signature. The inefficient detection signature costs not only the IDS resource but also the process of the peer-to-peer (P2P) network. In this paper, we therefore propose a blockchain-based retribution mechanism, which aims to incentivize the participants to contribute to verifying the efficiency of the detection signature in terms of certain distributed consensus. We implement a prototype using Ethereum blockchain, which instantiates a token-based retribution mechanism and a smart contract-enabled voting-based distributed consensus. We conduct a number of experiments built on the prototype, and the experimental results demonstrate the effectiveness of the proposed approach

    Lowpass Filtering of Rate-Distortion Functions for Quality Smoothing in Real-Time Video Communication

    Get PDF
    Digital Object Identifier 10.1109/TCSVT.2005.852417In variable-bit-rate (VBR) video coding, the video is pre-processed to collect sequence-level statistics, which are used for global bit allocation in the actual encoding stage to obtain a smoothed video presentation quality. However, in real-time video recording and network streaming, this type of two-pass encoding scheme is not allowed because the access to future frames and global statistics is not available. To address this issue, we introduce the concept of low-pass filtering of rate-distortion (R-D) functions and develop a smoothed rate control (SRC) framework for real-time video recording and streaming. Theoretically, we prove that, using a geometric averaging filter, the SRC algorithm is able to maintain a smoothed video presentation quality while achieving the target bit rate automatically. We also analyze the buffer requirement of the SRC algorithm in real-time video streaming, and propose a scheme to seamlessly integrate robust buffer control into the SRC framework. The proposed SRC algorithm has very low computational complexity and implementation cost. Our extensive experimental results demonstrate that the SRC algorithm significantly reduces the picture quality variation in the encoded video clips

    PLATON II: New Capabilities and a Comprehensive Retrieval on HD 189733b Transit and Eclipse Data

    Get PDF
    Recently, we introduced PLanetary Atmospheric Tool for Observer Noobs (PLATON), a Python package that calculates model transmission spectra for exoplanets and retrieves atmospheric characteristics based on observed spectra. We now expand its capabilities to include the ability to compute secondary eclipse depths. We have also added the option to calculate models using the correlated-k method for radiative transfer, which improves accuracy without sacrificing speed. Additionally, we update the opacities in PLATON—many of which were generated using old or proprietary line lists—using the most recent and complete public line lists. These opacities are made available at R = 1000 and R = 10,000 over the 0.3–30 μm range, and at R = 375,000 in select near-IR bands, making it possible to utilize PLATON for ground-based high-resolution cross-correlation studies. To demonstrate PLATON's new capabilities, we perform a retrieval on published Hubble Space Telescope (HST) and Spitzer transmission and emission spectra of the archetypal hot Jupiter HD 189733b. This is the first joint transit and secondary eclipse retrieval for this planet in the literature, as well as the most comprehensive set of both transit and eclipse data assembled for a retrieval to date. We find that these high signal-to-noise data are well matched by atmosphere models with a C/O ratio of 0.66^(+0.05)_(−0.09) and a metallicity of 12⁺⁸₋₅ times solar where the terminator is dominated by extended nanometer-sized haze particles at optical wavelengths. These are among the smallest uncertainties reported to date for an exoplanet, demonstrating both the power and the limitations of HST and Spitzer exoplanet observations

    Detecting Abrupt Change of Channel Covariance Matrix in IRS-Assisted Communication

    Full text link
    The knowledge of channel covariance matrices is crucial to the design of intelligent reflecting surface (IRS) assisted communication. However, channel covariance matrices may change suddenly in practice. This letter focuses on the detection of the above change in IRS-assisted communication. Specifically, we consider the uplink communication system consisting of a single-antenna user (UE), an IRS, and a multi-antenna base station (BS). We first categorize two types of channel covariance matrix changes based on their impact on system design: Type I change, which denotes the change in the BS receive covariance matrix, and Type II change, which denotes the change in the IRS transmit/receive covariance matrix. Secondly, a powerful method is proposed to detect whether a Type I change occurs, a Type II change occurs, or no change occurs. The effectiveness of our proposed scheme is verified by numerical results.Comment: accepted by IEEE Wireless Communications Letter

    Static behaviour of two-tiered Dou-Gong system reinforced by super-elastic alloy

    Get PDF
    Dou-Gong system in Asian timber structures play an important role in resisting seismic action. Traditional carpentry in Asia uses timber pegs to connect components which enables relative movement between components, and hence provide friction to dissipate energy in an earthquake. This method however has some short falls such as inadequate stiffness to resist large lateral force and therefore the structures tend to exhibit permanent deformation after the earthquakes. This study proposes a new technique by using super-elastic alloy bars to replace the conventional wooden peg connections to enhance the seismic performance of the structures. Static push-over experiments were conducted on full scaled two-tiered Dou-Gong systems and the high-strength steel and conventional wood pegs as benchmarks. The ultimate stiffness of Dou-Gong system has shown increase by using both high-strength steel and super-elastic alloy bars, but only super-elastic alloy can provide a consistent high damping ratio. This technique also involves pre-strain the super-elastic alloy and the outcomes of this series of experiments have shown that pre-strain in the super-elastic alloy can significantly increase the damping ratio in the structure and hence more energy is dissipated. The results of this paper can be used in the projects of timber structures with Dou-Gong system

    Absolute frequency measurement of the 87Sr optical lattice clock at NTSC using International Atomic Time

    Full text link
    We report the absolute frequency measurement of the 5s2 1S0-5s5p 3P0 transition in 87Sr optical lattice clock (Sr1) at National Time Service Center (NTSC). Its systematic frequency shifts are evaluated carefully with a total relative uncertainty of 5.1E10-17. The measured absolute frequency is 429 228 004 229 872.91(18) Hz with a relative uncertainty of 4.13E10-16, with reference to the ensemble of primary and secondary frequency standards published in the Circular T bulletin by BIPM through a global navigation satellite system (GNSS) link
    corecore